Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the behavior of the function [tex]\( h(x) = 3 \sqrt{x+1} - 2 \)[/tex], we need to analyze in which intervals the function is increasing or decreasing.
1. Understanding the Function [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = 3 \sqrt{x+1} - 2 \][/tex]
The function involves a square root, which means it is defined for [tex]\( x \geq -1 \)[/tex].
2. Finding the Derivative [tex]\( h'(x) \)[/tex]:
To understand how the function behaves, we need to find its derivative [tex]\( h'(x) \)[/tex]:
[tex]\[ h(x) = 3 (x+1)^{1/2} - 2 \][/tex]
Differentiating this with respect to [tex]\( x \)[/tex]:
[tex]\[ h'(x) = 3 \cdot \frac{1}{2} (x+1)^{-1/2} \cdot 1 = \frac{3}{2} (x+1)^{-1/2} = \frac{3}{2\sqrt{x+1}} \][/tex]
3. Analyzing the Derivative [tex]\( h'(x) \)[/tex]:
The sign of the derivative will tell us whether the function is increasing or decreasing.
[tex]\[ h'(x) = \frac{3}{2\sqrt{x+1}} \][/tex]
For [tex]\( x \geq -1 \)[/tex]:
- The term [tex]\( \sqrt{x+1} \)[/tex] is always positive since [tex]\( x+1 \geq 0 \)[/tex].
- The fraction [tex]\( \frac{3}{2\sqrt{x+1}} \)[/tex] is always positive for [tex]\( x \geq -1 \)[/tex].
Hence, the derivative [tex]\( h'(x) \)[/tex] is positive for all [tex]\( x \geq -1 \)[/tex], indicating that the function is increasing in this interval.
4. Conclusion:
Since the derivative [tex]\( h'(x) \)[/tex] is positive for all [tex]\( x \geq -1 \)[/tex], the function [tex]\( h(x) \)[/tex] is increasing on the interval [tex]\( (-1, \infty) \)[/tex].
Therefore, the correct statement is:
- The function is increasing on the interval [tex]\( (-1, \infty) \)[/tex].
So, the answer is:
[tex]\[ \boxed{\text{The function is increasing on the interval } (-1, \infty).} \][/tex]
1. Understanding the Function [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = 3 \sqrt{x+1} - 2 \][/tex]
The function involves a square root, which means it is defined for [tex]\( x \geq -1 \)[/tex].
2. Finding the Derivative [tex]\( h'(x) \)[/tex]:
To understand how the function behaves, we need to find its derivative [tex]\( h'(x) \)[/tex]:
[tex]\[ h(x) = 3 (x+1)^{1/2} - 2 \][/tex]
Differentiating this with respect to [tex]\( x \)[/tex]:
[tex]\[ h'(x) = 3 \cdot \frac{1}{2} (x+1)^{-1/2} \cdot 1 = \frac{3}{2} (x+1)^{-1/2} = \frac{3}{2\sqrt{x+1}} \][/tex]
3. Analyzing the Derivative [tex]\( h'(x) \)[/tex]:
The sign of the derivative will tell us whether the function is increasing or decreasing.
[tex]\[ h'(x) = \frac{3}{2\sqrt{x+1}} \][/tex]
For [tex]\( x \geq -1 \)[/tex]:
- The term [tex]\( \sqrt{x+1} \)[/tex] is always positive since [tex]\( x+1 \geq 0 \)[/tex].
- The fraction [tex]\( \frac{3}{2\sqrt{x+1}} \)[/tex] is always positive for [tex]\( x \geq -1 \)[/tex].
Hence, the derivative [tex]\( h'(x) \)[/tex] is positive for all [tex]\( x \geq -1 \)[/tex], indicating that the function is increasing in this interval.
4. Conclusion:
Since the derivative [tex]\( h'(x) \)[/tex] is positive for all [tex]\( x \geq -1 \)[/tex], the function [tex]\( h(x) \)[/tex] is increasing on the interval [tex]\( (-1, \infty) \)[/tex].
Therefore, the correct statement is:
- The function is increasing on the interval [tex]\( (-1, \infty) \)[/tex].
So, the answer is:
[tex]\[ \boxed{\text{The function is increasing on the interval } (-1, \infty).} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.