Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the pre-image of vertex [tex]\( A' \)[/tex] under the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex], we need to reverse this transformation. The rule given changes the sign of the x-coordinate while leaving the y-coordinate unchanged.
Given the image [tex]\( A'(4, -2) \)[/tex], we need to find the original coordinates (pre-image) that would map to [tex]\( A'(4, -2) \)[/tex] using the given transformation rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex].
### Step-by-Step Solution
1. The transformation rule is [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex]. This means that:
- The x-coordinate of the image is the negative of the x-coordinate of the pre-image.
- The y-coordinate of the image is the same as the y-coordinate of the pre-image.
2. To find the pre-image, we need to reverse the transformation:
- If the image has coordinates [tex]\( (4, -2) \)[/tex], then the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] implies that:
- The x-coordinate of the pre-image should be the negative of the x-coordinate of the image. Therefore, if the image's x-coordinate is 4, the pre-image's x-coordinate should be:
[tex]\[ x = -4 \][/tex]
- The y-coordinate of the pre-image should be the same as the y-coordinate of the image. Therefore, if the image's y-coordinate is -2, the pre-image's y-coordinate should be:
[tex]\[ y = -2 \][/tex]
3. Combining these results, the pre-image coordinates before transformation would be:
[tex]\[ A(-4, -2) \][/tex]
Thus, the correct pre-image of [tex]\( A' \)[/tex] under the given rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] is [tex]\( A(-4, -2) \)[/tex].
### Conclusion
The pre-image of vertex [tex]\( A' \)[/tex] is [tex]\( \boxed{A(-4, -2)} \)[/tex].
Given the image [tex]\( A'(4, -2) \)[/tex], we need to find the original coordinates (pre-image) that would map to [tex]\( A'(4, -2) \)[/tex] using the given transformation rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex].
### Step-by-Step Solution
1. The transformation rule is [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex]. This means that:
- The x-coordinate of the image is the negative of the x-coordinate of the pre-image.
- The y-coordinate of the image is the same as the y-coordinate of the pre-image.
2. To find the pre-image, we need to reverse the transformation:
- If the image has coordinates [tex]\( (4, -2) \)[/tex], then the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] implies that:
- The x-coordinate of the pre-image should be the negative of the x-coordinate of the image. Therefore, if the image's x-coordinate is 4, the pre-image's x-coordinate should be:
[tex]\[ x = -4 \][/tex]
- The y-coordinate of the pre-image should be the same as the y-coordinate of the image. Therefore, if the image's y-coordinate is -2, the pre-image's y-coordinate should be:
[tex]\[ y = -2 \][/tex]
3. Combining these results, the pre-image coordinates before transformation would be:
[tex]\[ A(-4, -2) \][/tex]
Thus, the correct pre-image of [tex]\( A' \)[/tex] under the given rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] is [tex]\( A(-4, -2) \)[/tex].
### Conclusion
The pre-image of vertex [tex]\( A' \)[/tex] is [tex]\( \boxed{A(-4, -2)} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.