Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the pre-image of vertex [tex]\( A' \)[/tex] under the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex], we need to reverse this transformation. The rule given changes the sign of the x-coordinate while leaving the y-coordinate unchanged.
Given the image [tex]\( A'(4, -2) \)[/tex], we need to find the original coordinates (pre-image) that would map to [tex]\( A'(4, -2) \)[/tex] using the given transformation rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex].
### Step-by-Step Solution
1. The transformation rule is [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex]. This means that:
- The x-coordinate of the image is the negative of the x-coordinate of the pre-image.
- The y-coordinate of the image is the same as the y-coordinate of the pre-image.
2. To find the pre-image, we need to reverse the transformation:
- If the image has coordinates [tex]\( (4, -2) \)[/tex], then the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] implies that:
- The x-coordinate of the pre-image should be the negative of the x-coordinate of the image. Therefore, if the image's x-coordinate is 4, the pre-image's x-coordinate should be:
[tex]\[ x = -4 \][/tex]
- The y-coordinate of the pre-image should be the same as the y-coordinate of the image. Therefore, if the image's y-coordinate is -2, the pre-image's y-coordinate should be:
[tex]\[ y = -2 \][/tex]
3. Combining these results, the pre-image coordinates before transformation would be:
[tex]\[ A(-4, -2) \][/tex]
Thus, the correct pre-image of [tex]\( A' \)[/tex] under the given rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] is [tex]\( A(-4, -2) \)[/tex].
### Conclusion
The pre-image of vertex [tex]\( A' \)[/tex] is [tex]\( \boxed{A(-4, -2)} \)[/tex].
Given the image [tex]\( A'(4, -2) \)[/tex], we need to find the original coordinates (pre-image) that would map to [tex]\( A'(4, -2) \)[/tex] using the given transformation rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex].
### Step-by-Step Solution
1. The transformation rule is [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex]. This means that:
- The x-coordinate of the image is the negative of the x-coordinate of the pre-image.
- The y-coordinate of the image is the same as the y-coordinate of the pre-image.
2. To find the pre-image, we need to reverse the transformation:
- If the image has coordinates [tex]\( (4, -2) \)[/tex], then the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] implies that:
- The x-coordinate of the pre-image should be the negative of the x-coordinate of the image. Therefore, if the image's x-coordinate is 4, the pre-image's x-coordinate should be:
[tex]\[ x = -4 \][/tex]
- The y-coordinate of the pre-image should be the same as the y-coordinate of the image. Therefore, if the image's y-coordinate is -2, the pre-image's y-coordinate should be:
[tex]\[ y = -2 \][/tex]
3. Combining these results, the pre-image coordinates before transformation would be:
[tex]\[ A(-4, -2) \][/tex]
Thus, the correct pre-image of [tex]\( A' \)[/tex] under the given rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] is [tex]\( A(-4, -2) \)[/tex].
### Conclusion
The pre-image of vertex [tex]\( A' \)[/tex] is [tex]\( \boxed{A(-4, -2)} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.