Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the pre-image of vertex [tex]A'[/tex] if the rule that created the image is [tex]r_{.}(x, y) = (-x, y)[/tex]?

A. [tex]A(-4, 2)[/tex]

B. [tex]A(-2, -4)[/tex]

C. [tex]A(2, 4)[/tex]

D. [tex]A(4, -2)[/tex]

Sagot :

To determine the pre-image of vertex [tex]\( A' \)[/tex] under the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex], we need to reverse this transformation. The rule given changes the sign of the x-coordinate while leaving the y-coordinate unchanged.

Given the image [tex]\( A'(4, -2) \)[/tex], we need to find the original coordinates (pre-image) that would map to [tex]\( A'(4, -2) \)[/tex] using the given transformation rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex].

### Step-by-Step Solution

1. The transformation rule is [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex]. This means that:
- The x-coordinate of the image is the negative of the x-coordinate of the pre-image.
- The y-coordinate of the image is the same as the y-coordinate of the pre-image.

2. To find the pre-image, we need to reverse the transformation:
- If the image has coordinates [tex]\( (4, -2) \)[/tex], then the rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] implies that:
- The x-coordinate of the pre-image should be the negative of the x-coordinate of the image. Therefore, if the image's x-coordinate is 4, the pre-image's x-coordinate should be:
[tex]\[ x = -4 \][/tex]
- The y-coordinate of the pre-image should be the same as the y-coordinate of the image. Therefore, if the image's y-coordinate is -2, the pre-image's y-coordinate should be:
[tex]\[ y = -2 \][/tex]

3. Combining these results, the pre-image coordinates before transformation would be:
[tex]\[ A(-4, -2) \][/tex]

Thus, the correct pre-image of [tex]\( A' \)[/tex] under the given rule [tex]\( r_{\cdot}(x, y) \rightarrow (-x, y) \)[/tex] is [tex]\( A(-4, -2) \)[/tex].

### Conclusion

The pre-image of vertex [tex]\( A' \)[/tex] is [tex]\( \boxed{A(-4, -2)} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.