Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the inequality [tex]\(3 x^2 + 5 x > -2\)[/tex], we can follow these steps:
1. Rewrite the inequality:
[tex]\[ 3 x^2 + 5 x + 2 > 0 \][/tex]
This inequality is now a quadratic inequality.
2. Find the roots of the quadratic equation [tex]\(3 x^2 + 5 x + 2 = 0\)[/tex]:
To do this, we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 3\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = 2\)[/tex].
First, calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 5^2 - 4 \cdot 3 \cdot 2 = 25 - 24 = 1 \][/tex]
The discriminant is 1, which is positive, indicating two real and distinct roots.
Hence, the roots are:
[tex]\[ x = \frac{-5 \pm \sqrt{1}}{2 \cdot 3} = \frac{-5 \pm 1}{6} \][/tex]
Thus, the roots are:
[tex]\[ x = \frac{-5 + 1}{6} = \frac{-4}{6} = -\frac{2}{3} \][/tex]
and
[tex]\[ x = \frac{-5 - 1}{6} = \frac{-6}{6} = -1 \][/tex]
3. Determine the sign of [tex]\(3 x^2 + 5 x + 2\)[/tex] in the intervals determined by the roots:
The roots [tex]\(-1\)[/tex] and [tex]\(-\frac{2}{3}\)[/tex] divide the number line into three intervals: [tex]\((-\infty, -1)\)[/tex], [tex]\((-1, -\frac{2}{3})\)[/tex], and [tex]\((-\frac{2}{3}, \infty)\)[/tex].
- For [tex]\(x \in (-\infty, -1)\)[/tex]: Choose [tex]\(x = -2\)[/tex]:
[tex]\[ 3(-2)^2 + 5(-2) + 2 = 12 - 10 + 2 = 4 > 0 \][/tex]
- For [tex]\(x \in (-1, -\frac{2}{3})\)[/tex]: Choose [tex]\(x = -\frac{3}{4}\)[/tex]:
[tex]\[ 3\left(-\frac{3}{4}\right)^2 + 5\left(-\frac{3}{4}\right) + 2 = 3 \cdot \frac{9}{16} - \frac{15}{4} + 2 = \frac{27}{16} - \frac{60}{16} + \frac{32}{16} = -\frac{1}{16} < 0 \][/tex]
- For [tex]\(x \in (-\frac{2}{3}, \infty)\)[/tex]: Choose [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0)^2 + 5(0) + 2 = 2 > 0 \][/tex]
4. Combine the intervals where the quadratic expression is positive:
From the above analysis:
- [tex]\(3 x^2 + 5 x + 2 > 0\)[/tex] in the intervals [tex]\((-\infty, -1)\)[/tex] and [tex]\((-\frac{2}{3}, \infty)\)[/tex].
5. Write down the solution in interval notation:
[tex]\[ x \in (-\infty, -1) \cup (-\frac{2}{3}, \infty) \][/tex]
6. Identify the corresponding option:
The correct solution matches the first option: [tex]\(x <-1\)[/tex] or [tex]\(x > -\frac{2}{3}\)[/tex].
Thus, the solution to the inequality [tex]\(3 x^2 + 5 x > -2\)[/tex] is:
[tex]\[ x < -1 \text{ or } x > -\frac{2}{3} \][/tex]
1. Rewrite the inequality:
[tex]\[ 3 x^2 + 5 x + 2 > 0 \][/tex]
This inequality is now a quadratic inequality.
2. Find the roots of the quadratic equation [tex]\(3 x^2 + 5 x + 2 = 0\)[/tex]:
To do this, we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 3\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = 2\)[/tex].
First, calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 5^2 - 4 \cdot 3 \cdot 2 = 25 - 24 = 1 \][/tex]
The discriminant is 1, which is positive, indicating two real and distinct roots.
Hence, the roots are:
[tex]\[ x = \frac{-5 \pm \sqrt{1}}{2 \cdot 3} = \frac{-5 \pm 1}{6} \][/tex]
Thus, the roots are:
[tex]\[ x = \frac{-5 + 1}{6} = \frac{-4}{6} = -\frac{2}{3} \][/tex]
and
[tex]\[ x = \frac{-5 - 1}{6} = \frac{-6}{6} = -1 \][/tex]
3. Determine the sign of [tex]\(3 x^2 + 5 x + 2\)[/tex] in the intervals determined by the roots:
The roots [tex]\(-1\)[/tex] and [tex]\(-\frac{2}{3}\)[/tex] divide the number line into three intervals: [tex]\((-\infty, -1)\)[/tex], [tex]\((-1, -\frac{2}{3})\)[/tex], and [tex]\((-\frac{2}{3}, \infty)\)[/tex].
- For [tex]\(x \in (-\infty, -1)\)[/tex]: Choose [tex]\(x = -2\)[/tex]:
[tex]\[ 3(-2)^2 + 5(-2) + 2 = 12 - 10 + 2 = 4 > 0 \][/tex]
- For [tex]\(x \in (-1, -\frac{2}{3})\)[/tex]: Choose [tex]\(x = -\frac{3}{4}\)[/tex]:
[tex]\[ 3\left(-\frac{3}{4}\right)^2 + 5\left(-\frac{3}{4}\right) + 2 = 3 \cdot \frac{9}{16} - \frac{15}{4} + 2 = \frac{27}{16} - \frac{60}{16} + \frac{32}{16} = -\frac{1}{16} < 0 \][/tex]
- For [tex]\(x \in (-\frac{2}{3}, \infty)\)[/tex]: Choose [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0)^2 + 5(0) + 2 = 2 > 0 \][/tex]
4. Combine the intervals where the quadratic expression is positive:
From the above analysis:
- [tex]\(3 x^2 + 5 x + 2 > 0\)[/tex] in the intervals [tex]\((-\infty, -1)\)[/tex] and [tex]\((-\frac{2}{3}, \infty)\)[/tex].
5. Write down the solution in interval notation:
[tex]\[ x \in (-\infty, -1) \cup (-\frac{2}{3}, \infty) \][/tex]
6. Identify the corresponding option:
The correct solution matches the first option: [tex]\(x <-1\)[/tex] or [tex]\(x > -\frac{2}{3}\)[/tex].
Thus, the solution to the inequality [tex]\(3 x^2 + 5 x > -2\)[/tex] is:
[tex]\[ x < -1 \text{ or } x > -\frac{2}{3} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.