Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the sample size needed for a poll with a specified margin of error and confidence level, we can follow a step-by-step process using standard statistical formulas for sample size calculations. Here’s the detailed solution:
### Step-by-Step Solution:
1. Identify the given parameters:
- Margin of error (E): 3.73 percentage points, which we convert to decimal form, [tex]\( E = 0.0373 \)[/tex].
- Confidence level: 99%, which corresponds to a critical value:
- From the provided table, the critical value for a 99% confidence level ([tex]\( z^* \)[/tex]) is 2.576.
2. Assume the proportion (p) of the population:
- Often, we assume [tex]\( p = 0.5 \)[/tex] because it provides the maximum sample size (most conservative estimate).
3. Use the margin of error formula for proportions:
The margin of error for a proportion can be given by:
[tex]\[ E = z^* \times \sqrt{\frac{p(1-p)}{n}} \][/tex]
Where [tex]\( n \)[/tex] is the sample size we need to solve for.
4. Rearrange the formula to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \left( \frac{z^* \times \sqrt{p(1-p)}}{E} \right)^2 \][/tex]
Plugging in the known values:
- [tex]\( z^* = 2.576 \)[/tex]
- [tex]\( p = 0.5 \)[/tex]
- [tex]\( E = 0.0373 \)[/tex]
5. Calculate the sample size:
[tex]\[ n = \left( \frac{2.576 \times \sqrt{0.5 \times 0.5}}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( \frac{2.576 \times \sqrt{0.25}}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( \frac{2.576 \times 0.5}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( \frac{1.288}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( 34.5403 \right)^2 \][/tex]
[tex]\[ n \approx 1192.9 \][/tex]
6. Round up to the nearest whole number:
Since sample size must be a whole number and we typically round up to ensure our sample is large enough:
[tex]\[ n \approx 1193 \][/tex]
Therefore, to achieve a 99% confidence interval with a margin of error of 3.73 percentage points, at least [tex]\( \boxed{1193} \)[/tex] voters should be sampled.
### Step-by-Step Solution:
1. Identify the given parameters:
- Margin of error (E): 3.73 percentage points, which we convert to decimal form, [tex]\( E = 0.0373 \)[/tex].
- Confidence level: 99%, which corresponds to a critical value:
- From the provided table, the critical value for a 99% confidence level ([tex]\( z^* \)[/tex]) is 2.576.
2. Assume the proportion (p) of the population:
- Often, we assume [tex]\( p = 0.5 \)[/tex] because it provides the maximum sample size (most conservative estimate).
3. Use the margin of error formula for proportions:
The margin of error for a proportion can be given by:
[tex]\[ E = z^* \times \sqrt{\frac{p(1-p)}{n}} \][/tex]
Where [tex]\( n \)[/tex] is the sample size we need to solve for.
4. Rearrange the formula to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \left( \frac{z^* \times \sqrt{p(1-p)}}{E} \right)^2 \][/tex]
Plugging in the known values:
- [tex]\( z^* = 2.576 \)[/tex]
- [tex]\( p = 0.5 \)[/tex]
- [tex]\( E = 0.0373 \)[/tex]
5. Calculate the sample size:
[tex]\[ n = \left( \frac{2.576 \times \sqrt{0.5 \times 0.5}}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( \frac{2.576 \times \sqrt{0.25}}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( \frac{2.576 \times 0.5}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( \frac{1.288}{0.0373} \right)^2 \][/tex]
[tex]\[ n = \left( 34.5403 \right)^2 \][/tex]
[tex]\[ n \approx 1192.9 \][/tex]
6. Round up to the nearest whole number:
Since sample size must be a whole number and we typically round up to ensure our sample is large enough:
[tex]\[ n \approx 1193 \][/tex]
Therefore, to achieve a 99% confidence interval with a margin of error of 3.73 percentage points, at least [tex]\( \boxed{1193} \)[/tex] voters should be sampled.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.