Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the type of the function [tex]\( f(x) = 2x^3 - 4x^2 + 5 \)[/tex], we will analyze the form and components of the function.
1. Polynomial Function: A polynomial function is an expression that includes variables raised to non-negative integer powers, combined using addition, subtraction, and multiplication. It generally takes the form:
[tex]\[ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \][/tex]
where [tex]\( a_n, a_{n-1}, \dots, a_0 \)[/tex] are constants, and [tex]\( n \)[/tex] is a non-negative integer.
2. Exponential Function: An exponential function has the variable in the exponent and usually takes the form:
[tex]\[ f(x) = a \cdot b^x, \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants and [tex]\( b \)[/tex] is a positive real number not equal to 1.
3. Logarithmic Function: A logarithmic function is the inverse of an exponential function and takes the form:
[tex]\[ f(x) = a \cdot \log_b(x), \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, and [tex]\( b \)[/tex] is the base of the logarithm.
4. Radical Function: A radical function includes a root, and it typically appears in the form:
[tex]\[ f(x) = a \cdot \sqrt[n]{x}, \][/tex]
where [tex]\( a \)[/tex] is a constant and [tex]\( n \)[/tex] is an integer greater than or equal to 2.
Now, let's identify the type of the given function [tex]\( f(x) = 2x^3 - 4x^2 + 5 \)[/tex].
- The function has terms involving [tex]\( x \)[/tex] raised to the power of 3 and 2, both of which are non-negative integers.
- There are no exponents where [tex]\( x \)[/tex] is in the exponent position.
- There are no logarithmic terms.
- There are no roots involved.
Since the function [tex]\( f(x) = 2x^3 - 4x^2 + 5 \)[/tex] is composed of terms where [tex]\( x \)[/tex] is raised to non-negative integer powers, it fits the form of a polynomial function.
Therefore, the type of function is Polynomial.
The answer is Polynomial.
1. Polynomial Function: A polynomial function is an expression that includes variables raised to non-negative integer powers, combined using addition, subtraction, and multiplication. It generally takes the form:
[tex]\[ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \][/tex]
where [tex]\( a_n, a_{n-1}, \dots, a_0 \)[/tex] are constants, and [tex]\( n \)[/tex] is a non-negative integer.
2. Exponential Function: An exponential function has the variable in the exponent and usually takes the form:
[tex]\[ f(x) = a \cdot b^x, \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants and [tex]\( b \)[/tex] is a positive real number not equal to 1.
3. Logarithmic Function: A logarithmic function is the inverse of an exponential function and takes the form:
[tex]\[ f(x) = a \cdot \log_b(x), \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, and [tex]\( b \)[/tex] is the base of the logarithm.
4. Radical Function: A radical function includes a root, and it typically appears in the form:
[tex]\[ f(x) = a \cdot \sqrt[n]{x}, \][/tex]
where [tex]\( a \)[/tex] is a constant and [tex]\( n \)[/tex] is an integer greater than or equal to 2.
Now, let's identify the type of the given function [tex]\( f(x) = 2x^3 - 4x^2 + 5 \)[/tex].
- The function has terms involving [tex]\( x \)[/tex] raised to the power of 3 and 2, both of which are non-negative integers.
- There are no exponents where [tex]\( x \)[/tex] is in the exponent position.
- There are no logarithmic terms.
- There are no roots involved.
Since the function [tex]\( f(x) = 2x^3 - 4x^2 + 5 \)[/tex] is composed of terms where [tex]\( x \)[/tex] is raised to non-negative integer powers, it fits the form of a polynomial function.
Therefore, the type of function is Polynomial.
The answer is Polynomial.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.