Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the interval where both functions [tex]\( f(x) = x^2 - x \)[/tex] and [tex]\( g(x) = \log(2x + 1) \)[/tex] are positive, we need to analyze each function separately and then find the common interval where both conditions are satisfied.
1. Determine where [tex]\( f(x) = x^2 - x > 0 \)[/tex]:
The quadratic [tex]\( x^2 - x \)[/tex] can be factored as:
[tex]\[ x^2 - x = x(x - 1) \][/tex]
Therefore, [tex]\( x(x - 1) > 0 \)[/tex].
- The product of two numbers is positive when both numbers are positive or both numbers are negative.
- [tex]\( x(x - 1) > 0 \)[/tex] when [tex]\( x > 1 \)[/tex] or [tex]\( x < 0 \)[/tex] (excluding [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex], since [tex]\( f(x) = 0 \)[/tex] at these points).
So, [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex].
2. Determine where [tex]\( g(x) = \log(2x + 1) > 0 \)[/tex]:
The function [tex]\( \log(2x + 1) \)[/tex] is positive when the argument of the logarithm is greater than 1:
[tex]\[ 2x + 1 > 1 \][/tex]
Solving the inequality:
[tex]\[ 2x + 1 > 1 \implies 2x > 0 \implies x > 0 \][/tex]
So, [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex].
3. Find the intersection of intervals:
We need the values of [tex]\( x \)[/tex] that satisfy both conditions:
[tex]\[ f(x) > 0 \quad \text{and} \quad g(x) > 0 \][/tex]
From the conditions above:
- [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex]
- [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex]
The intersection of these intervals where both functions are positive is:
[tex]\[ (1, \infty) \][/tex]
Therefore, the correct interval where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive is:
[tex]\((1, \infty)\)[/tex]
1. Determine where [tex]\( f(x) = x^2 - x > 0 \)[/tex]:
The quadratic [tex]\( x^2 - x \)[/tex] can be factored as:
[tex]\[ x^2 - x = x(x - 1) \][/tex]
Therefore, [tex]\( x(x - 1) > 0 \)[/tex].
- The product of two numbers is positive when both numbers are positive or both numbers are negative.
- [tex]\( x(x - 1) > 0 \)[/tex] when [tex]\( x > 1 \)[/tex] or [tex]\( x < 0 \)[/tex] (excluding [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex], since [tex]\( f(x) = 0 \)[/tex] at these points).
So, [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex].
2. Determine where [tex]\( g(x) = \log(2x + 1) > 0 \)[/tex]:
The function [tex]\( \log(2x + 1) \)[/tex] is positive when the argument of the logarithm is greater than 1:
[tex]\[ 2x + 1 > 1 \][/tex]
Solving the inequality:
[tex]\[ 2x + 1 > 1 \implies 2x > 0 \implies x > 0 \][/tex]
So, [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex].
3. Find the intersection of intervals:
We need the values of [tex]\( x \)[/tex] that satisfy both conditions:
[tex]\[ f(x) > 0 \quad \text{and} \quad g(x) > 0 \][/tex]
From the conditions above:
- [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex]
- [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex]
The intersection of these intervals where both functions are positive is:
[tex]\[ (1, \infty) \][/tex]
Therefore, the correct interval where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive is:
[tex]\((1, \infty)\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.