Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the interval where both functions [tex]\( f(x) = x^2 - x \)[/tex] and [tex]\( g(x) = \log(2x + 1) \)[/tex] are positive, we need to analyze each function separately and then find the common interval where both conditions are satisfied.
1. Determine where [tex]\( f(x) = x^2 - x > 0 \)[/tex]:
The quadratic [tex]\( x^2 - x \)[/tex] can be factored as:
[tex]\[ x^2 - x = x(x - 1) \][/tex]
Therefore, [tex]\( x(x - 1) > 0 \)[/tex].
- The product of two numbers is positive when both numbers are positive or both numbers are negative.
- [tex]\( x(x - 1) > 0 \)[/tex] when [tex]\( x > 1 \)[/tex] or [tex]\( x < 0 \)[/tex] (excluding [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex], since [tex]\( f(x) = 0 \)[/tex] at these points).
So, [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex].
2. Determine where [tex]\( g(x) = \log(2x + 1) > 0 \)[/tex]:
The function [tex]\( \log(2x + 1) \)[/tex] is positive when the argument of the logarithm is greater than 1:
[tex]\[ 2x + 1 > 1 \][/tex]
Solving the inequality:
[tex]\[ 2x + 1 > 1 \implies 2x > 0 \implies x > 0 \][/tex]
So, [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex].
3. Find the intersection of intervals:
We need the values of [tex]\( x \)[/tex] that satisfy both conditions:
[tex]\[ f(x) > 0 \quad \text{and} \quad g(x) > 0 \][/tex]
From the conditions above:
- [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex]
- [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex]
The intersection of these intervals where both functions are positive is:
[tex]\[ (1, \infty) \][/tex]
Therefore, the correct interval where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive is:
[tex]\((1, \infty)\)[/tex]
1. Determine where [tex]\( f(x) = x^2 - x > 0 \)[/tex]:
The quadratic [tex]\( x^2 - x \)[/tex] can be factored as:
[tex]\[ x^2 - x = x(x - 1) \][/tex]
Therefore, [tex]\( x(x - 1) > 0 \)[/tex].
- The product of two numbers is positive when both numbers are positive or both numbers are negative.
- [tex]\( x(x - 1) > 0 \)[/tex] when [tex]\( x > 1 \)[/tex] or [tex]\( x < 0 \)[/tex] (excluding [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex], since [tex]\( f(x) = 0 \)[/tex] at these points).
So, [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex].
2. Determine where [tex]\( g(x) = \log(2x + 1) > 0 \)[/tex]:
The function [tex]\( \log(2x + 1) \)[/tex] is positive when the argument of the logarithm is greater than 1:
[tex]\[ 2x + 1 > 1 \][/tex]
Solving the inequality:
[tex]\[ 2x + 1 > 1 \implies 2x > 0 \implies x > 0 \][/tex]
So, [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex].
3. Find the intersection of intervals:
We need the values of [tex]\( x \)[/tex] that satisfy both conditions:
[tex]\[ f(x) > 0 \quad \text{and} \quad g(x) > 0 \][/tex]
From the conditions above:
- [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex]
- [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex]
The intersection of these intervals where both functions are positive is:
[tex]\[ (1, \infty) \][/tex]
Therefore, the correct interval where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive is:
[tex]\((1, \infty)\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.