At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the coordinates of the point that is [tex]\(\frac{1}{5}\)[/tex] of the way from [tex]\(A(-7, -4)\)[/tex] to [tex]\(B(3, 6)\)[/tex], we need to determine the difference in the [tex]\(x\)[/tex]-coordinates and the [tex]\(y\)[/tex]-coordinates between points [tex]\(A\)[/tex] and [tex]\(B\)[/tex], then scale these differences by [tex]\(\frac{1}{5}\)[/tex], and finally add these scaled differences to the coordinates of point [tex]\(A\)[/tex].
Here's the step-by-step solution:
1. Calculate the difference in the [tex]\(x\)[/tex]-coordinates:
[tex]\[ \Delta x = B_x - A_x = 3 - (-7) = 10 \][/tex]
2. Calculate the difference in the [tex]\(y\)[/tex]-coordinates:
[tex]\[ \Delta y = B_y - A_y = 6 - (-4) = 10 \][/tex]
3. Scale the differences by [tex]\(\frac{1}{5}\)[/tex]:
[tex]\[ \text{Scale in } x \text{-direction} = \frac{1}{5} \times \Delta x = \frac{1}{5} \times 10 = 2 \][/tex]
[tex]\[ \text{Scale in } y \text{-direction} = \frac{1}{5} \times \Delta y = \frac{1}{5} \times 10 = 2 \][/tex]
4. Add the scaled differences to the coordinates of point [tex]\(A\)[/tex]:
[tex]\[ \text{New } x \text{-coordinate} = A_x + \text{Scale in } x \text{-direction} = -7 + 2 = -5 \][/tex]
[tex]\[ \text{New } y \text{-coordinate} = A_y + \text{Scale in } y \text{-direction} = -4 + 2 = -2 \][/tex]
Thus, the coordinates of the point that is [tex]\(\frac{1}{5}\)[/tex] of the way from [tex]\(A(-7,\ -4)\)[/tex] to [tex]\(B(3,\ 6)\)[/tex] are [tex]\((-5, -2)\)[/tex].
The correct answer is:
[tex]\[ \boxed{(-5, -2)} \][/tex]
Here's the step-by-step solution:
1. Calculate the difference in the [tex]\(x\)[/tex]-coordinates:
[tex]\[ \Delta x = B_x - A_x = 3 - (-7) = 10 \][/tex]
2. Calculate the difference in the [tex]\(y\)[/tex]-coordinates:
[tex]\[ \Delta y = B_y - A_y = 6 - (-4) = 10 \][/tex]
3. Scale the differences by [tex]\(\frac{1}{5}\)[/tex]:
[tex]\[ \text{Scale in } x \text{-direction} = \frac{1}{5} \times \Delta x = \frac{1}{5} \times 10 = 2 \][/tex]
[tex]\[ \text{Scale in } y \text{-direction} = \frac{1}{5} \times \Delta y = \frac{1}{5} \times 10 = 2 \][/tex]
4. Add the scaled differences to the coordinates of point [tex]\(A\)[/tex]:
[tex]\[ \text{New } x \text{-coordinate} = A_x + \text{Scale in } x \text{-direction} = -7 + 2 = -5 \][/tex]
[tex]\[ \text{New } y \text{-coordinate} = A_y + \text{Scale in } y \text{-direction} = -4 + 2 = -2 \][/tex]
Thus, the coordinates of the point that is [tex]\(\frac{1}{5}\)[/tex] of the way from [tex]\(A(-7,\ -4)\)[/tex] to [tex]\(B(3,\ 6)\)[/tex] are [tex]\((-5, -2)\)[/tex].
The correct answer is:
[tex]\[ \boxed{(-5, -2)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.