Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the common factor of the terms [tex]\( 15x^2 - 12x \)[/tex], let's break down the terms carefully:
1. The first term is [tex]\( 15x^2 \)[/tex].
2. The second term is [tex]\( -12x \)[/tex].
### Step 1: Identify the Numerical Coefficients
First, let's look at the numerical coefficients of each term:
- The coefficient of the first term ([tex]\( 15x^2 \)[/tex]) is 15.
- The coefficient of the second term ([tex]\( -12x \)[/tex]) is -12.
### Step 2: Find the Greatest Common Divisor (GCD) of the Coefficients
The next step is to find the greatest common divisor (GCD) of the coefficients 15 and -12.
- The factors of 15 are 1, 3, 5, and 15.
- The factors of 12 are 1, 2, 3, 4, 6, and 12.
- The greatest common factor among these numbers is 3.
### Step 3: Identify the Variable Part
Now, let's consider the variable part of each term:
- The first term [tex]\( 15x^2 \)[/tex] has [tex]\( x^2 \)[/tex].
- The second term [tex]\( -12x \)[/tex] has [tex]\( x \)[/tex].
In both terms, the minimum power of [tex]\( x \)[/tex] present is [tex]\( x \)[/tex].
### Step 4: Combine the GCD and the Variable Part
Combining the GCD of the numerical coefficients (which is 3) and the minimum power of [tex]\( x \)[/tex] (which is [tex]\( x \)[/tex]), the common factor of both terms is [tex]\( 3x \)[/tex].
Therefore, the common factor of the polynomial [tex]\( 15x^2 - 12x \)[/tex] is:
[tex]\[ \boxed{3x} \][/tex]
1. The first term is [tex]\( 15x^2 \)[/tex].
2. The second term is [tex]\( -12x \)[/tex].
### Step 1: Identify the Numerical Coefficients
First, let's look at the numerical coefficients of each term:
- The coefficient of the first term ([tex]\( 15x^2 \)[/tex]) is 15.
- The coefficient of the second term ([tex]\( -12x \)[/tex]) is -12.
### Step 2: Find the Greatest Common Divisor (GCD) of the Coefficients
The next step is to find the greatest common divisor (GCD) of the coefficients 15 and -12.
- The factors of 15 are 1, 3, 5, and 15.
- The factors of 12 are 1, 2, 3, 4, 6, and 12.
- The greatest common factor among these numbers is 3.
### Step 3: Identify the Variable Part
Now, let's consider the variable part of each term:
- The first term [tex]\( 15x^2 \)[/tex] has [tex]\( x^2 \)[/tex].
- The second term [tex]\( -12x \)[/tex] has [tex]\( x \)[/tex].
In both terms, the minimum power of [tex]\( x \)[/tex] present is [tex]\( x \)[/tex].
### Step 4: Combine the GCD and the Variable Part
Combining the GCD of the numerical coefficients (which is 3) and the minimum power of [tex]\( x \)[/tex] (which is [tex]\( x \)[/tex]), the common factor of both terms is [tex]\( 3x \)[/tex].
Therefore, the common factor of the polynomial [tex]\( 15x^2 - 12x \)[/tex] is:
[tex]\[ \boxed{3x} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.