At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's use the grouping method to factor the polynomial [tex]\(2x^3 + 6x^2 - 7x - 21\)[/tex]. Here’s a step-by-step solution:
1. Rewrite the polynomial in two groups:
[tex]\[2x^3 + 6x^2 - 7x - 21\][/tex]
Let's divide this polynomial into two parts:
[tex]\[ (2x^3 + 6x^2) + (-7x - 21) \][/tex]
2. Factor out the greatest common factor (GCF) in each group:
- From the first group [tex]\(2x^3 + 6x^2\)[/tex], the GCF is [tex]\(2x^2\)[/tex]:
[tex]\[ 2x^2(x + 3) \][/tex]
- From the second group [tex]\(-7x - 21\)[/tex], the GCF is [tex]\(-7\)[/tex]:
[tex]\[ -7(x + 3) \][/tex]
Now the polynomial looks like:
[tex]\[ 2x^2(x + 3) - 7(x + 3) \][/tex]
3. Factor out the common binomial factor:
We see that [tex]\((x + 3)\)[/tex] is a common factor in both terms:
[tex]\[ (x + 3)(2x^2 - 7) \][/tex]
Therefore, the factored form of the polynomial [tex]\(2x^3 + 6x^2 - 7x - 21\)[/tex] is:
[tex]\[ (x + 3)(2x^2 - 7) \][/tex]
4. Compare with the given options:
We can observe that this matches option B:
[tex]\[ (x + 3)(2x^2 - 7) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{(x + 3)\left(2x^2 - 7\right)} \][/tex]
Thus, the correct option is [tex]\( \text{B} \)[/tex].
1. Rewrite the polynomial in two groups:
[tex]\[2x^3 + 6x^2 - 7x - 21\][/tex]
Let's divide this polynomial into two parts:
[tex]\[ (2x^3 + 6x^2) + (-7x - 21) \][/tex]
2. Factor out the greatest common factor (GCF) in each group:
- From the first group [tex]\(2x^3 + 6x^2\)[/tex], the GCF is [tex]\(2x^2\)[/tex]:
[tex]\[ 2x^2(x + 3) \][/tex]
- From the second group [tex]\(-7x - 21\)[/tex], the GCF is [tex]\(-7\)[/tex]:
[tex]\[ -7(x + 3) \][/tex]
Now the polynomial looks like:
[tex]\[ 2x^2(x + 3) - 7(x + 3) \][/tex]
3. Factor out the common binomial factor:
We see that [tex]\((x + 3)\)[/tex] is a common factor in both terms:
[tex]\[ (x + 3)(2x^2 - 7) \][/tex]
Therefore, the factored form of the polynomial [tex]\(2x^3 + 6x^2 - 7x - 21\)[/tex] is:
[tex]\[ (x + 3)(2x^2 - 7) \][/tex]
4. Compare with the given options:
We can observe that this matches option B:
[tex]\[ (x + 3)(2x^2 - 7) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{(x + 3)\left(2x^2 - 7\right)} \][/tex]
Thus, the correct option is [tex]\( \text{B} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.