Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the system of equations using the elimination method, we'll follow these steps:
1. Write down the given system of equations:
[tex]\[ \begin{cases} 5x + 8y = -88 \\ x - y = -2 \end{cases} \][/tex]
2. Eliminate one of the variables:
To eliminate the variable [tex]\(x\)[/tex], we can first ensure that the coefficient of [tex]\(x\)[/tex] in the second equation is the same as in the first. We'll make the coefficient of [tex]\(x\)[/tex] in the second equation equal to 5 by multiplying the entire second equation by 5:
[tex]\[ 5(x - y) = 5(-2) \][/tex]
This gives us the new system:
[tex]\[ \begin{cases} 5x + 8y = -88 \\ 5x - 5y = -10 \end{cases} \][/tex]
3. Subtract the second modified equation from the first to eliminate [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} (5x + 8y) - (5x - 5y) &= -88 - (-10) \\ 5x + 8y - 5x + 5y &= -88 + 10 \\ 13y &= -78 \end{aligned} \][/tex]
Simplifying this, we find:
[tex]\[ y = \frac{-78}{13} = -6 \][/tex]
4. Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
We'll use the second equation for substitution:
[tex]\[ x - y = -2 \][/tex]
Substitute [tex]\(y = -6\)[/tex]:
[tex]\[ x - (-6) = -2 \\ x + 6 = -2 \\ x = -2 - 6 \\ x = -8 \][/tex]
5. Write the solution as an ordered pair:
[tex]\[ (x, y) = (-8, -6) \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (-8, -6) \][/tex]
1. Write down the given system of equations:
[tex]\[ \begin{cases} 5x + 8y = -88 \\ x - y = -2 \end{cases} \][/tex]
2. Eliminate one of the variables:
To eliminate the variable [tex]\(x\)[/tex], we can first ensure that the coefficient of [tex]\(x\)[/tex] in the second equation is the same as in the first. We'll make the coefficient of [tex]\(x\)[/tex] in the second equation equal to 5 by multiplying the entire second equation by 5:
[tex]\[ 5(x - y) = 5(-2) \][/tex]
This gives us the new system:
[tex]\[ \begin{cases} 5x + 8y = -88 \\ 5x - 5y = -10 \end{cases} \][/tex]
3. Subtract the second modified equation from the first to eliminate [tex]\(x\)[/tex]:
[tex]\[ \begin{aligned} (5x + 8y) - (5x - 5y) &= -88 - (-10) \\ 5x + 8y - 5x + 5y &= -88 + 10 \\ 13y &= -78 \end{aligned} \][/tex]
Simplifying this, we find:
[tex]\[ y = \frac{-78}{13} = -6 \][/tex]
4. Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
We'll use the second equation for substitution:
[tex]\[ x - y = -2 \][/tex]
Substitute [tex]\(y = -6\)[/tex]:
[tex]\[ x - (-6) = -2 \\ x + 6 = -2 \\ x = -2 - 6 \\ x = -8 \][/tex]
5. Write the solution as an ordered pair:
[tex]\[ (x, y) = (-8, -6) \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (-8, -6) \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.