Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve this step-by-step.
1. Understanding Half-life:
The half-life of a substance is the time it takes for half of it to decay. For radium-226, this time is 1,600 years.
2. Determine the Number of Half-lives:
To find out how much radium-226 remains after 8,000 years, we need to determine how many half-lives have passed in that time period.
[tex]\[ \text{Number of half-lives} = \frac{\text{Total time period}}{\text{Half-life period}} = \frac{8,000 \text{ years}}{1,600 \text{ years}} = 5 \][/tex]
3. Calculating the Remaining Fraction:
Each half-life reduces the remaining amount of substance by half. After one half-life, [tex]\( \frac{1}{2} \)[/tex] of the original amount remains. After two half-lives, [tex]\( \left(\frac{1}{2}\right)^2 = \frac{1}{4} \)[/tex] remains, and this pattern continues. Therefore, after 5 half-lives, the remaining fraction can be calculated as follows:
[tex]\[ \text{Remaining fraction} = \left( \frac{1}{2} \right)^5 = \frac{1}{32} \][/tex]
Thus, the fraction of the original amount of radium-226 that will still be radium after 8,000 years is [tex]\( \frac{1}{32} \)[/tex].
So, the correct answer is:
C. [tex]\( \frac{1}{32} \)[/tex]
1. Understanding Half-life:
The half-life of a substance is the time it takes for half of it to decay. For radium-226, this time is 1,600 years.
2. Determine the Number of Half-lives:
To find out how much radium-226 remains after 8,000 years, we need to determine how many half-lives have passed in that time period.
[tex]\[ \text{Number of half-lives} = \frac{\text{Total time period}}{\text{Half-life period}} = \frac{8,000 \text{ years}}{1,600 \text{ years}} = 5 \][/tex]
3. Calculating the Remaining Fraction:
Each half-life reduces the remaining amount of substance by half. After one half-life, [tex]\( \frac{1}{2} \)[/tex] of the original amount remains. After two half-lives, [tex]\( \left(\frac{1}{2}\right)^2 = \frac{1}{4} \)[/tex] remains, and this pattern continues. Therefore, after 5 half-lives, the remaining fraction can be calculated as follows:
[tex]\[ \text{Remaining fraction} = \left( \frac{1}{2} \right)^5 = \frac{1}{32} \][/tex]
Thus, the fraction of the original amount of radium-226 that will still be radium after 8,000 years is [tex]\( \frac{1}{32} \)[/tex].
So, the correct answer is:
C. [tex]\( \frac{1}{32} \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.