Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the system of equations using elimination, we start with the given system:
[tex]\[ \text{Equation 1:} \quad -5x - y = 9 \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 1: Eliminate [tex]\( y \)[/tex]
We want to find a way to eliminate one of the variables by combining the two equations. To eliminate [tex]\( y \)[/tex], we first manipulate the equations so that the coefficients of [tex]\( y \)[/tex] are the same (or opposites) in both equations.
Let's multiply Equation 1 by [tex]\( 5 \)[/tex] to make the coefficient of [tex]\( y \)[/tex] equal to [tex]\( -5 \)[/tex] (the same as in Equation 2).
[tex]\[ 5 \times (-5x - y) = 5 \times 9 \][/tex]
[tex]\[ -25x - 5y = 45 \][/tex]
Now we have a new system:
[tex]\[ \text{Equation 3:} \quad -25x - 5y = 45 \quad \text{(modified Equation 1)} \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 2: Subtract the modified Equation 1 from Equation 2
Now, subtract Equation 2 from the modified Equation 1:
[tex]\[ (-25x - 5y) - (3x - 5y) = 45 - 17 \][/tex]
[tex]\[ -25x - 3x = 45 - 17 \][/tex]
[tex]\[ -28x = 28 \][/tex]
Step 3: Solve for [tex]\( x \)[/tex]
Divide both sides of the equation by [tex]\(-28\)[/tex]:
[tex]\[ x = \frac{28}{-28} \][/tex]
[tex]\[ x = -1 \][/tex]
Step 4: Substitute [tex]\( x \)[/tex] back to find [tex]\( y \)[/tex]
Now that we have [tex]\( x = -1 \)[/tex], substitute [tex]\( x \)[/tex] into one of the original equations to solve for [tex]\( y \)[/tex]. We use Equation 1:
[tex]\[ -5(-1) - y = 9 \][/tex]
[tex]\[ 5 - y = 9 \][/tex]
[tex]\[ -y = 9 - 5 \][/tex]
[tex]\[ -y = 4 \][/tex]
[tex]\[ y = -4 \][/tex]
Solution
The solution to the system of equations is:
[tex]\[ x = -1 \quad \text{and} \quad y = -4 \][/tex]
Therefore, the solution is:
[tex]\[ (x, y) = (-1, -4) \][/tex]
[tex]\[ \text{Equation 1:} \quad -5x - y = 9 \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 1: Eliminate [tex]\( y \)[/tex]
We want to find a way to eliminate one of the variables by combining the two equations. To eliminate [tex]\( y \)[/tex], we first manipulate the equations so that the coefficients of [tex]\( y \)[/tex] are the same (or opposites) in both equations.
Let's multiply Equation 1 by [tex]\( 5 \)[/tex] to make the coefficient of [tex]\( y \)[/tex] equal to [tex]\( -5 \)[/tex] (the same as in Equation 2).
[tex]\[ 5 \times (-5x - y) = 5 \times 9 \][/tex]
[tex]\[ -25x - 5y = 45 \][/tex]
Now we have a new system:
[tex]\[ \text{Equation 3:} \quad -25x - 5y = 45 \quad \text{(modified Equation 1)} \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 2: Subtract the modified Equation 1 from Equation 2
Now, subtract Equation 2 from the modified Equation 1:
[tex]\[ (-25x - 5y) - (3x - 5y) = 45 - 17 \][/tex]
[tex]\[ -25x - 3x = 45 - 17 \][/tex]
[tex]\[ -28x = 28 \][/tex]
Step 3: Solve for [tex]\( x \)[/tex]
Divide both sides of the equation by [tex]\(-28\)[/tex]:
[tex]\[ x = \frac{28}{-28} \][/tex]
[tex]\[ x = -1 \][/tex]
Step 4: Substitute [tex]\( x \)[/tex] back to find [tex]\( y \)[/tex]
Now that we have [tex]\( x = -1 \)[/tex], substitute [tex]\( x \)[/tex] into one of the original equations to solve for [tex]\( y \)[/tex]. We use Equation 1:
[tex]\[ -5(-1) - y = 9 \][/tex]
[tex]\[ 5 - y = 9 \][/tex]
[tex]\[ -y = 9 - 5 \][/tex]
[tex]\[ -y = 4 \][/tex]
[tex]\[ y = -4 \][/tex]
Solution
The solution to the system of equations is:
[tex]\[ x = -1 \quad \text{and} \quad y = -4 \][/tex]
Therefore, the solution is:
[tex]\[ (x, y) = (-1, -4) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.