Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the system of equations using elimination, we start with the given system:
[tex]\[ \text{Equation 1:} \quad -5x - y = 9 \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 1: Eliminate [tex]\( y \)[/tex]
We want to find a way to eliminate one of the variables by combining the two equations. To eliminate [tex]\( y \)[/tex], we first manipulate the equations so that the coefficients of [tex]\( y \)[/tex] are the same (or opposites) in both equations.
Let's multiply Equation 1 by [tex]\( 5 \)[/tex] to make the coefficient of [tex]\( y \)[/tex] equal to [tex]\( -5 \)[/tex] (the same as in Equation 2).
[tex]\[ 5 \times (-5x - y) = 5 \times 9 \][/tex]
[tex]\[ -25x - 5y = 45 \][/tex]
Now we have a new system:
[tex]\[ \text{Equation 3:} \quad -25x - 5y = 45 \quad \text{(modified Equation 1)} \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 2: Subtract the modified Equation 1 from Equation 2
Now, subtract Equation 2 from the modified Equation 1:
[tex]\[ (-25x - 5y) - (3x - 5y) = 45 - 17 \][/tex]
[tex]\[ -25x - 3x = 45 - 17 \][/tex]
[tex]\[ -28x = 28 \][/tex]
Step 3: Solve for [tex]\( x \)[/tex]
Divide both sides of the equation by [tex]\(-28\)[/tex]:
[tex]\[ x = \frac{28}{-28} \][/tex]
[tex]\[ x = -1 \][/tex]
Step 4: Substitute [tex]\( x \)[/tex] back to find [tex]\( y \)[/tex]
Now that we have [tex]\( x = -1 \)[/tex], substitute [tex]\( x \)[/tex] into one of the original equations to solve for [tex]\( y \)[/tex]. We use Equation 1:
[tex]\[ -5(-1) - y = 9 \][/tex]
[tex]\[ 5 - y = 9 \][/tex]
[tex]\[ -y = 9 - 5 \][/tex]
[tex]\[ -y = 4 \][/tex]
[tex]\[ y = -4 \][/tex]
Solution
The solution to the system of equations is:
[tex]\[ x = -1 \quad \text{and} \quad y = -4 \][/tex]
Therefore, the solution is:
[tex]\[ (x, y) = (-1, -4) \][/tex]
[tex]\[ \text{Equation 1:} \quad -5x - y = 9 \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 1: Eliminate [tex]\( y \)[/tex]
We want to find a way to eliminate one of the variables by combining the two equations. To eliminate [tex]\( y \)[/tex], we first manipulate the equations so that the coefficients of [tex]\( y \)[/tex] are the same (or opposites) in both equations.
Let's multiply Equation 1 by [tex]\( 5 \)[/tex] to make the coefficient of [tex]\( y \)[/tex] equal to [tex]\( -5 \)[/tex] (the same as in Equation 2).
[tex]\[ 5 \times (-5x - y) = 5 \times 9 \][/tex]
[tex]\[ -25x - 5y = 45 \][/tex]
Now we have a new system:
[tex]\[ \text{Equation 3:} \quad -25x - 5y = 45 \quad \text{(modified Equation 1)} \][/tex]
[tex]\[ \text{Equation 2:} \quad 3x - 5y = 17 \][/tex]
Step 2: Subtract the modified Equation 1 from Equation 2
Now, subtract Equation 2 from the modified Equation 1:
[tex]\[ (-25x - 5y) - (3x - 5y) = 45 - 17 \][/tex]
[tex]\[ -25x - 3x = 45 - 17 \][/tex]
[tex]\[ -28x = 28 \][/tex]
Step 3: Solve for [tex]\( x \)[/tex]
Divide both sides of the equation by [tex]\(-28\)[/tex]:
[tex]\[ x = \frac{28}{-28} \][/tex]
[tex]\[ x = -1 \][/tex]
Step 4: Substitute [tex]\( x \)[/tex] back to find [tex]\( y \)[/tex]
Now that we have [tex]\( x = -1 \)[/tex], substitute [tex]\( x \)[/tex] into one of the original equations to solve for [tex]\( y \)[/tex]. We use Equation 1:
[tex]\[ -5(-1) - y = 9 \][/tex]
[tex]\[ 5 - y = 9 \][/tex]
[tex]\[ -y = 9 - 5 \][/tex]
[tex]\[ -y = 4 \][/tex]
[tex]\[ y = -4 \][/tex]
Solution
The solution to the system of equations is:
[tex]\[ x = -1 \quad \text{and} \quad y = -4 \][/tex]
Therefore, the solution is:
[tex]\[ (x, y) = (-1, -4) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.