Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the probability that a randomly selected ball from the Bingo game has a letter [tex]\(B\)[/tex] or [tex]\(O\)[/tex], we can use the probabilities given in the table.
Here's the step-by-step solution:
1. Identify the given probabilities:
- Probability of selecting a ball with the letter [tex]\(B\)[/tex] is [tex]\(0.16\)[/tex].
- Probability of selecting a ball with the letter [tex]\(O\)[/tex] is [tex]\(0.18\)[/tex].
2. Use the rule of addition:
The rule of addition for probabilities states that if we want to find the probability of one of several mutually exclusive events happening, we simply add their probabilities. Since [tex]\(B\)[/tex] and [tex]\(O\)[/tex] are mutually exclusive (a ball cannot be labeled with both letters), we add their probabilities.
3. Calculate the combined probability:
[tex]\[ P(\text{B or O}) = P(B) + P(O) \][/tex]
Substituting in the values:
[tex]\[ P(\text{B or O}) = 0.16 + 0.18 \][/tex]
4. Add the probabilities:
[tex]\[ P(\text{B or O}) = 0.34 \][/tex]
Thus, the probability that a randomly selected ball has a letter [tex]\(B\)[/tex] or [tex]\(O\)[/tex] is
[tex]\[ P(\text{B or O}) = 0.34. \][/tex]
Now, to ensure accuracy and confirm the computational process:
The sum [tex]\(0.16 + 0.18\)[/tex] mathematically yields [tex]\(0.33999999999999997\)[/tex] due to floating-point representation in calculations, and when rounded to a suitable precision, it becomes [tex]\(0.34\)[/tex]. Hence, the accurate probability is:
[tex]\[ P(\text{B or O}) = 0.34. \][/tex]
Here's the step-by-step solution:
1. Identify the given probabilities:
- Probability of selecting a ball with the letter [tex]\(B\)[/tex] is [tex]\(0.16\)[/tex].
- Probability of selecting a ball with the letter [tex]\(O\)[/tex] is [tex]\(0.18\)[/tex].
2. Use the rule of addition:
The rule of addition for probabilities states that if we want to find the probability of one of several mutually exclusive events happening, we simply add their probabilities. Since [tex]\(B\)[/tex] and [tex]\(O\)[/tex] are mutually exclusive (a ball cannot be labeled with both letters), we add their probabilities.
3. Calculate the combined probability:
[tex]\[ P(\text{B or O}) = P(B) + P(O) \][/tex]
Substituting in the values:
[tex]\[ P(\text{B or O}) = 0.16 + 0.18 \][/tex]
4. Add the probabilities:
[tex]\[ P(\text{B or O}) = 0.34 \][/tex]
Thus, the probability that a randomly selected ball has a letter [tex]\(B\)[/tex] or [tex]\(O\)[/tex] is
[tex]\[ P(\text{B or O}) = 0.34. \][/tex]
Now, to ensure accuracy and confirm the computational process:
The sum [tex]\(0.16 + 0.18\)[/tex] mathematically yields [tex]\(0.33999999999999997\)[/tex] due to floating-point representation in calculations, and when rounded to a suitable precision, it becomes [tex]\(0.34\)[/tex]. Hence, the accurate probability is:
[tex]\[ P(\text{B or O}) = 0.34. \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.