Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To demonstrate that Circle A is similar to Circle B, we need to apply a series of transformations to Circle A. Here are the detailed steps that lead to this conclusion:
1. Translate Circle A:
- The center of Circle A is initially at [tex]\((2, 8)\)[/tex].
- Apply the translation rule [tex]\((x - 3, y + 4)\)[/tex]:
[tex]\[ x' = 2 - 3 = -1 \quad \text{(new x-coordinate)} \][/tex]
[tex]\[ y' = 8 + 4 = 12 \quad \text{(new y-coordinate)} \][/tex]
- The new center after translation is at [tex]\((-1, 12)\)[/tex].
2. Rotate Circle A 270 degrees about the center:
- When a circle is rotated around its center, only the position of its center changes, but not the shape or size. For a circle, rotation around its center does not affect its radius.
- Thus, the center remains at [tex]\((-1, 12)\)[/tex] and the radius remains [tex]\(2\)[/tex].
3. Reflect Circle A over the line [tex]\(x = 1\)[/tex]:
- The reflection rule over the vertical line [tex]\(x = 1\)[/tex] can be applied as follows:
[tex]\[ x'' = 2 \times 1 - (-1) = 2 + 1 = 3 \quad \text{(new x-coordinate)} \][/tex]
[tex]\[ y'' = 12 \quad \text{(y-coordinate remains the same)} \][/tex]
- The new center after reflection is at [tex]\((3, 12)\)[/tex].
4. Dilate Circle A by a scale factor of 5:
- The radius of Circle A is initially [tex]\(2\)[/tex].
- Apply the dilation by multiplying the radius by the scale factor [tex]\(5\)[/tex]:
[tex]\[ \text{new radius} = 2 \times 5 = 10 \][/tex]
- After dilation, the radius becomes [tex]\(10\)[/tex].
Now let's summarize the transformations:
- After translation, the center moved to [tex]\((-1, 12)\)[/tex].
- After rotation, the center remains [tex]\((-1, 12)\)[/tex].
- After reflection, the center moved to [tex]\( (3, 12) \)[/tex].
- After dilation, the radius changed from [tex]\(2\)[/tex] to [tex]\(10\)[/tex].
Finally, we compare the transformed Circle A with Circle B:
- The transformed Circle A has a center at [tex]\((3, 12)\)[/tex] and a radius of [tex]\(10\)[/tex].
- Circle B has a center at [tex]\((5, 4)\)[/tex] and a radius of [tex]\(10\)[/tex].
To conclude, the series of transformations applied to Circle A results in a circle that is similar to Circle B by demonstrating that both circles now share the same radius. By proving these transformations mathematically, similarities in their shapes and sizes were established.
1. Translate Circle A:
- The center of Circle A is initially at [tex]\((2, 8)\)[/tex].
- Apply the translation rule [tex]\((x - 3, y + 4)\)[/tex]:
[tex]\[ x' = 2 - 3 = -1 \quad \text{(new x-coordinate)} \][/tex]
[tex]\[ y' = 8 + 4 = 12 \quad \text{(new y-coordinate)} \][/tex]
- The new center after translation is at [tex]\((-1, 12)\)[/tex].
2. Rotate Circle A 270 degrees about the center:
- When a circle is rotated around its center, only the position of its center changes, but not the shape or size. For a circle, rotation around its center does not affect its radius.
- Thus, the center remains at [tex]\((-1, 12)\)[/tex] and the radius remains [tex]\(2\)[/tex].
3. Reflect Circle A over the line [tex]\(x = 1\)[/tex]:
- The reflection rule over the vertical line [tex]\(x = 1\)[/tex] can be applied as follows:
[tex]\[ x'' = 2 \times 1 - (-1) = 2 + 1 = 3 \quad \text{(new x-coordinate)} \][/tex]
[tex]\[ y'' = 12 \quad \text{(y-coordinate remains the same)} \][/tex]
- The new center after reflection is at [tex]\((3, 12)\)[/tex].
4. Dilate Circle A by a scale factor of 5:
- The radius of Circle A is initially [tex]\(2\)[/tex].
- Apply the dilation by multiplying the radius by the scale factor [tex]\(5\)[/tex]:
[tex]\[ \text{new radius} = 2 \times 5 = 10 \][/tex]
- After dilation, the radius becomes [tex]\(10\)[/tex].
Now let's summarize the transformations:
- After translation, the center moved to [tex]\((-1, 12)\)[/tex].
- After rotation, the center remains [tex]\((-1, 12)\)[/tex].
- After reflection, the center moved to [tex]\( (3, 12) \)[/tex].
- After dilation, the radius changed from [tex]\(2\)[/tex] to [tex]\(10\)[/tex].
Finally, we compare the transformed Circle A with Circle B:
- The transformed Circle A has a center at [tex]\((3, 12)\)[/tex] and a radius of [tex]\(10\)[/tex].
- Circle B has a center at [tex]\((5, 4)\)[/tex] and a radius of [tex]\(10\)[/tex].
To conclude, the series of transformations applied to Circle A results in a circle that is similar to Circle B by demonstrating that both circles now share the same radius. By proving these transformations mathematically, similarities in their shapes and sizes were established.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.