Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's solve the problem step by step using the Ideal Gas Law, [tex]\( PV = nRT \)[/tex], where:
- [tex]\( P \)[/tex] is the pressure of the gas.
- [tex]\( V \)[/tex] is the volume of the gas.
- [tex]\( n \)[/tex] is the amount of gas (in moles).
- [tex]\( R \)[/tex] is the ideal gas constant.
- [tex]\( T \)[/tex] is the temperature of the gas in Kelvin.
Given data:
- [tex]\( n = 0.80 \, \text{mol} \)[/tex]
- [tex]\( V = 275 \, \text{mL} \)[/tex] which needs to be converted to [tex]\( \text{L} \)[/tex]
- [tex]\( P = 175 \, \text{kPa} \)[/tex]
- [tex]\( R = 8.814 \, \frac{ \text{L} \cdot \text{kPa} }{ \text{mol} \cdot \text{K} } \)[/tex]
First, convert the volume from milliliters (mL) to liters (L):
[tex]\[ 275 \, \text{mL} = 275 \times 10^{-3} \, \text{L} = 0.275 \, \text{L} \][/tex]
Now substitute all known values into the Ideal Gas Law equation, [tex]\( PV = nRT \)[/tex], and solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substitute in the values:
[tex]\[ T = \frac{(175 \, \text{kPa}) (0.275 \, \text{L})}{(0.80 \, \text{mol}) (8.814 \, \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}})} \][/tex]
After performing all operations, you get the result:
[tex]\[ T \approx 6.825 \, \text{K} \][/tex]
Given the provided options:
- [tex]\( 4.6 \, \text{K} \)[/tex]
- [tex]\( 7.2 \, \text{K} \)[/tex]
- [tex]\( 61 \, \text{K} \)[/tex]
- [tex]\( 96 \, \text{K} \)[/tex]
The closest value to our calculated temperature of [tex]\( 6.825 \, \text{K} \)[/tex] is not perfectly matching any of these options exactly but appears closest to:
[tex]\[ 7.2 \, \text{K} \][/tex]
So, the temperature of the gas is approximately [tex]\( 7.2 \, \text{K} \)[/tex].
- [tex]\( P \)[/tex] is the pressure of the gas.
- [tex]\( V \)[/tex] is the volume of the gas.
- [tex]\( n \)[/tex] is the amount of gas (in moles).
- [tex]\( R \)[/tex] is the ideal gas constant.
- [tex]\( T \)[/tex] is the temperature of the gas in Kelvin.
Given data:
- [tex]\( n = 0.80 \, \text{mol} \)[/tex]
- [tex]\( V = 275 \, \text{mL} \)[/tex] which needs to be converted to [tex]\( \text{L} \)[/tex]
- [tex]\( P = 175 \, \text{kPa} \)[/tex]
- [tex]\( R = 8.814 \, \frac{ \text{L} \cdot \text{kPa} }{ \text{mol} \cdot \text{K} } \)[/tex]
First, convert the volume from milliliters (mL) to liters (L):
[tex]\[ 275 \, \text{mL} = 275 \times 10^{-3} \, \text{L} = 0.275 \, \text{L} \][/tex]
Now substitute all known values into the Ideal Gas Law equation, [tex]\( PV = nRT \)[/tex], and solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substitute in the values:
[tex]\[ T = \frac{(175 \, \text{kPa}) (0.275 \, \text{L})}{(0.80 \, \text{mol}) (8.814 \, \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}})} \][/tex]
After performing all operations, you get the result:
[tex]\[ T \approx 6.825 \, \text{K} \][/tex]
Given the provided options:
- [tex]\( 4.6 \, \text{K} \)[/tex]
- [tex]\( 7.2 \, \text{K} \)[/tex]
- [tex]\( 61 \, \text{K} \)[/tex]
- [tex]\( 96 \, \text{K} \)[/tex]
The closest value to our calculated temperature of [tex]\( 6.825 \, \text{K} \)[/tex] is not perfectly matching any of these options exactly but appears closest to:
[tex]\[ 7.2 \, \text{K} \][/tex]
So, the temperature of the gas is approximately [tex]\( 7.2 \, \text{K} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.