Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction:
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.