At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction:
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.