Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the total normal force acting on the cart, we need to consider both the gravitational force and the vertical component of the applied force. Here’s a step-by-step solution:
1. Determine the mass of the cart:
The mass [tex]\( m \)[/tex] of the cart is given as [tex]\( 7.32 \)[/tex] kg.
2. Identify the force applied and its angle:
The force [tex]\( F \)[/tex] applied by the shopper is [tex]\( 14.7 \)[/tex] N, directed at [tex]\( -32.7^\circ \)[/tex] below the horizontal.
3. Calculate the gravitational force acting downward:
The gravitational force [tex]\( F_g \)[/tex] can be calculated using the relation:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\( g \)[/tex] is the acceleration due to gravity ([tex]\( 9.81 \ \text{m/s}^2 \)[/tex]):
[tex]\[ F_g = 7.32 \ \text{kg} \times 9.81 \ \text{m/s}^2 = 71.8092 \ \text{N} \][/tex]
4. Determine the vertical component of the applied force:
Since the force is applied at an angle below the horizontal, we need the vertical component [tex]\( F_v \)[/tex]. The vertical component can be found using the sine of the angle [tex]\( \theta \)[/tex]:
[tex]\[ F_v = F \times \sin(\theta) \][/tex]
where [tex]\( \theta = -32.7^\circ \)[/tex]. Converting this angle to radians:
[tex]\[ \theta_{\text{rad}} = -32.7^\circ \times \frac{\pi}{180} = -0.5707226654021458 \ \text{radians} \][/tex]
Now, calculate the vertical component:
[tex]\[ F_v = 14.7 \ \text{N} \times \sin(-0.5707226654021458) = 14.7 \ \text{N} \times (-0.5707226654021458) = -7.941532711021528 \ \text{N} \][/tex]
5. Calculate the total normal force:
The normal force [tex]\( n \)[/tex] is the sum of the gravitational force and the vertical component of the applied force:
[tex]\[ n = F_g + F_v \][/tex]
Substituting the values:
[tex]\[ n = 71.8092 \ \text{N} + (-7.941532711021528 \ \text{N}) = 63.867667288978474 \ \text{N} \][/tex]
Thus, the total normal force acting on the cart is:
[tex]\[ n = 63.867667288978474 \ \text{N} \][/tex]
1. Determine the mass of the cart:
The mass [tex]\( m \)[/tex] of the cart is given as [tex]\( 7.32 \)[/tex] kg.
2. Identify the force applied and its angle:
The force [tex]\( F \)[/tex] applied by the shopper is [tex]\( 14.7 \)[/tex] N, directed at [tex]\( -32.7^\circ \)[/tex] below the horizontal.
3. Calculate the gravitational force acting downward:
The gravitational force [tex]\( F_g \)[/tex] can be calculated using the relation:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\( g \)[/tex] is the acceleration due to gravity ([tex]\( 9.81 \ \text{m/s}^2 \)[/tex]):
[tex]\[ F_g = 7.32 \ \text{kg} \times 9.81 \ \text{m/s}^2 = 71.8092 \ \text{N} \][/tex]
4. Determine the vertical component of the applied force:
Since the force is applied at an angle below the horizontal, we need the vertical component [tex]\( F_v \)[/tex]. The vertical component can be found using the sine of the angle [tex]\( \theta \)[/tex]:
[tex]\[ F_v = F \times \sin(\theta) \][/tex]
where [tex]\( \theta = -32.7^\circ \)[/tex]. Converting this angle to radians:
[tex]\[ \theta_{\text{rad}} = -32.7^\circ \times \frac{\pi}{180} = -0.5707226654021458 \ \text{radians} \][/tex]
Now, calculate the vertical component:
[tex]\[ F_v = 14.7 \ \text{N} \times \sin(-0.5707226654021458) = 14.7 \ \text{N} \times (-0.5707226654021458) = -7.941532711021528 \ \text{N} \][/tex]
5. Calculate the total normal force:
The normal force [tex]\( n \)[/tex] is the sum of the gravitational force and the vertical component of the applied force:
[tex]\[ n = F_g + F_v \][/tex]
Substituting the values:
[tex]\[ n = 71.8092 \ \text{N} + (-7.941532711021528 \ \text{N}) = 63.867667288978474 \ \text{N} \][/tex]
Thus, the total normal force acting on the cart is:
[tex]\[ n = 63.867667288978474 \ \text{N} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.