Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine whether the given set of numbers [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex] forms a sequence, we need to analyze the pattern and formula that defines the sequence.
1. Identify the given sequence:
- The given numbers are [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex].
2. Observe the numbers and check for a pattern:
- Let's look at the differences between consecutive terms:
[tex]\[ \begin{align*} 1 - 0 &= 1, \\ 3 - 1 &= 2, \\ 6 - 3 &= 3, \\ 10 - 6 &= 4, \\ 15 - 10 &= 5, \\ 21 - 15 &= 6. \end{align*} \][/tex]
- The differences between consecutive terms are [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex].
3. Check if the pattern matches a known sequence:
- The differences [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex] indicate that each term increases by the next integer in the sequence.
4. Identify the sequence formula:
- These differences are characteristic of the triangular numbers, which can be expressed by the formula:
[tex]\[ T_n = \frac{n(n + 1)}{2} \][/tex]
- Now, let's verify each term with this triangular number formula:
[tex]\[ \begin{align*} T_0 &= \frac{0(0 + 1)}{2} = 0, \\ T_1 &= \frac{1(1 + 1)}{2} = 1, \\ T_2 &= \frac{2(2 + 1)}{2} = 3, \\ T_3 &= \frac{3(3 + 1)}{2} = 6, \\ T_4 &= \frac{4(4 + 1)}{2} = 10, \\ T_5 &= \frac{5(5 + 1)}{2} = 15, \\ T_6 &= \frac{6(6 + 1)}{2} = 21. \end{align*} \][/tex]
5. Conclusion:
- Each term in the provided set of numbers matches the corresponding triangular number given by [tex]\(T_n = \frac{n(n + 1)}{2}\)[/tex].
- Therefore, the given set of numbers [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex] conforms to the formula of triangular numbers, indicating it is a sequence.
Hence, the given set of numbers is indeed a number sequence, specifically the sequence of triangular numbers.
1. Identify the given sequence:
- The given numbers are [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex].
2. Observe the numbers and check for a pattern:
- Let's look at the differences between consecutive terms:
[tex]\[ \begin{align*} 1 - 0 &= 1, \\ 3 - 1 &= 2, \\ 6 - 3 &= 3, \\ 10 - 6 &= 4, \\ 15 - 10 &= 5, \\ 21 - 15 &= 6. \end{align*} \][/tex]
- The differences between consecutive terms are [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex].
3. Check if the pattern matches a known sequence:
- The differences [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex] indicate that each term increases by the next integer in the sequence.
4. Identify the sequence formula:
- These differences are characteristic of the triangular numbers, which can be expressed by the formula:
[tex]\[ T_n = \frac{n(n + 1)}{2} \][/tex]
- Now, let's verify each term with this triangular number formula:
[tex]\[ \begin{align*} T_0 &= \frac{0(0 + 1)}{2} = 0, \\ T_1 &= \frac{1(1 + 1)}{2} = 1, \\ T_2 &= \frac{2(2 + 1)}{2} = 3, \\ T_3 &= \frac{3(3 + 1)}{2} = 6, \\ T_4 &= \frac{4(4 + 1)}{2} = 10, \\ T_5 &= \frac{5(5 + 1)}{2} = 15, \\ T_6 &= \frac{6(6 + 1)}{2} = 21. \end{align*} \][/tex]
5. Conclusion:
- Each term in the provided set of numbers matches the corresponding triangular number given by [tex]\(T_n = \frac{n(n + 1)}{2}\)[/tex].
- Therefore, the given set of numbers [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex] conforms to the formula of triangular numbers, indicating it is a sequence.
Hence, the given set of numbers is indeed a number sequence, specifically the sequence of triangular numbers.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.