Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine whether the given set of numbers [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex] forms a sequence, we need to analyze the pattern and formula that defines the sequence.
1. Identify the given sequence:
- The given numbers are [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex].
2. Observe the numbers and check for a pattern:
- Let's look at the differences between consecutive terms:
[tex]\[ \begin{align*} 1 - 0 &= 1, \\ 3 - 1 &= 2, \\ 6 - 3 &= 3, \\ 10 - 6 &= 4, \\ 15 - 10 &= 5, \\ 21 - 15 &= 6. \end{align*} \][/tex]
- The differences between consecutive terms are [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex].
3. Check if the pattern matches a known sequence:
- The differences [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex] indicate that each term increases by the next integer in the sequence.
4. Identify the sequence formula:
- These differences are characteristic of the triangular numbers, which can be expressed by the formula:
[tex]\[ T_n = \frac{n(n + 1)}{2} \][/tex]
- Now, let's verify each term with this triangular number formula:
[tex]\[ \begin{align*} T_0 &= \frac{0(0 + 1)}{2} = 0, \\ T_1 &= \frac{1(1 + 1)}{2} = 1, \\ T_2 &= \frac{2(2 + 1)}{2} = 3, \\ T_3 &= \frac{3(3 + 1)}{2} = 6, \\ T_4 &= \frac{4(4 + 1)}{2} = 10, \\ T_5 &= \frac{5(5 + 1)}{2} = 15, \\ T_6 &= \frac{6(6 + 1)}{2} = 21. \end{align*} \][/tex]
5. Conclusion:
- Each term in the provided set of numbers matches the corresponding triangular number given by [tex]\(T_n = \frac{n(n + 1)}{2}\)[/tex].
- Therefore, the given set of numbers [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex] conforms to the formula of triangular numbers, indicating it is a sequence.
Hence, the given set of numbers is indeed a number sequence, specifically the sequence of triangular numbers.
1. Identify the given sequence:
- The given numbers are [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex].
2. Observe the numbers and check for a pattern:
- Let's look at the differences between consecutive terms:
[tex]\[ \begin{align*} 1 - 0 &= 1, \\ 3 - 1 &= 2, \\ 6 - 3 &= 3, \\ 10 - 6 &= 4, \\ 15 - 10 &= 5, \\ 21 - 15 &= 6. \end{align*} \][/tex]
- The differences between consecutive terms are [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex].
3. Check if the pattern matches a known sequence:
- The differences [tex]\(1, 2, 3, 4, 5, 6, \ldots\)[/tex] indicate that each term increases by the next integer in the sequence.
4. Identify the sequence formula:
- These differences are characteristic of the triangular numbers, which can be expressed by the formula:
[tex]\[ T_n = \frac{n(n + 1)}{2} \][/tex]
- Now, let's verify each term with this triangular number formula:
[tex]\[ \begin{align*} T_0 &= \frac{0(0 + 1)}{2} = 0, \\ T_1 &= \frac{1(1 + 1)}{2} = 1, \\ T_2 &= \frac{2(2 + 1)}{2} = 3, \\ T_3 &= \frac{3(3 + 1)}{2} = 6, \\ T_4 &= \frac{4(4 + 1)}{2} = 10, \\ T_5 &= \frac{5(5 + 1)}{2} = 15, \\ T_6 &= \frac{6(6 + 1)}{2} = 21. \end{align*} \][/tex]
5. Conclusion:
- Each term in the provided set of numbers matches the corresponding triangular number given by [tex]\(T_n = \frac{n(n + 1)}{2}\)[/tex].
- Therefore, the given set of numbers [tex]\(0, 1, 3, 6, 10, 15, 21, \ldots\)[/tex] conforms to the formula of triangular numbers, indicating it is a sequence.
Hence, the given set of numbers is indeed a number sequence, specifically the sequence of triangular numbers.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.