Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the [tex]\( x \)[/tex]-component of the weight of the crate on an inclined ramp, we can follow these steps:
1. Calculate the weight of the crate:
The weight [tex]\( W \)[/tex] of an object is given by the formula:
[tex]\[ W = m \cdot g \][/tex]
where [tex]\( m \)[/tex] is the mass of the crate and [tex]\( g \)[/tex] is the acceleration due to gravity.
For a mass [tex]\( m = 75.0 \)[/tex] kg and assuming [tex]\( g = 9.81 \)[/tex] m/s² (the acceleration due to gravity),
[tex]\[ W = 75.0 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 735.75 \, \text{N} \][/tex]
2. Convert the inclined angle from degrees to radians:
To find the component of the weight along the incline, we need to convert the angle from degrees to radians. The inclined angle of the ramp is [tex]\( 28.0^{\circ} \)[/tex].
We use the conversion:
[tex]\[ \text{angle in radians} = \text{angle in degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Thus,
[tex]\[ 28.0^{\circ} \times \left( \frac{\pi}{180} \right) \approx 0.4887 \, \text{radians} \][/tex]
3. Calculate the [tex]\( x \)[/tex]-component of the weight:
The [tex]\( x \)[/tex]-component of the weight [tex]\( W_x \)[/tex] is the component of the weight parallel to the inclined plane. This can be calculated using:
[tex]\[ W_x = W \cdot \sin(\theta) \][/tex]
where [tex]\( \theta \)[/tex] is the incline angle in radians. Given [tex]\( W = 735.75 \, \text{N} \)[/tex] and [tex]\( \theta \approx 0.4887 \, \text{radians} \)[/tex],
[tex]\[ W_x = 735.75 \, \text{N} \times \sin(0.4887) \approx 345.41 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the weight of the crate is approximately [tex]\( 345.41 \, \text{N} \)[/tex].
1. Calculate the weight of the crate:
The weight [tex]\( W \)[/tex] of an object is given by the formula:
[tex]\[ W = m \cdot g \][/tex]
where [tex]\( m \)[/tex] is the mass of the crate and [tex]\( g \)[/tex] is the acceleration due to gravity.
For a mass [tex]\( m = 75.0 \)[/tex] kg and assuming [tex]\( g = 9.81 \)[/tex] m/s² (the acceleration due to gravity),
[tex]\[ W = 75.0 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 735.75 \, \text{N} \][/tex]
2. Convert the inclined angle from degrees to radians:
To find the component of the weight along the incline, we need to convert the angle from degrees to radians. The inclined angle of the ramp is [tex]\( 28.0^{\circ} \)[/tex].
We use the conversion:
[tex]\[ \text{angle in radians} = \text{angle in degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Thus,
[tex]\[ 28.0^{\circ} \times \left( \frac{\pi}{180} \right) \approx 0.4887 \, \text{radians} \][/tex]
3. Calculate the [tex]\( x \)[/tex]-component of the weight:
The [tex]\( x \)[/tex]-component of the weight [tex]\( W_x \)[/tex] is the component of the weight parallel to the inclined plane. This can be calculated using:
[tex]\[ W_x = W \cdot \sin(\theta) \][/tex]
where [tex]\( \theta \)[/tex] is the incline angle in radians. Given [tex]\( W = 735.75 \, \text{N} \)[/tex] and [tex]\( \theta \approx 0.4887 \, \text{radians} \)[/tex],
[tex]\[ W_x = 735.75 \, \text{N} \times \sin(0.4887) \approx 345.41 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the weight of the crate is approximately [tex]\( 345.41 \, \text{N} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.