Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the [tex]\( x \)[/tex]-component of the weight of the crate on an inclined ramp, we can follow these steps:
1. Calculate the weight of the crate:
The weight [tex]\( W \)[/tex] of an object is given by the formula:
[tex]\[ W = m \cdot g \][/tex]
where [tex]\( m \)[/tex] is the mass of the crate and [tex]\( g \)[/tex] is the acceleration due to gravity.
For a mass [tex]\( m = 75.0 \)[/tex] kg and assuming [tex]\( g = 9.81 \)[/tex] m/s² (the acceleration due to gravity),
[tex]\[ W = 75.0 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 735.75 \, \text{N} \][/tex]
2. Convert the inclined angle from degrees to radians:
To find the component of the weight along the incline, we need to convert the angle from degrees to radians. The inclined angle of the ramp is [tex]\( 28.0^{\circ} \)[/tex].
We use the conversion:
[tex]\[ \text{angle in radians} = \text{angle in degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Thus,
[tex]\[ 28.0^{\circ} \times \left( \frac{\pi}{180} \right) \approx 0.4887 \, \text{radians} \][/tex]
3. Calculate the [tex]\( x \)[/tex]-component of the weight:
The [tex]\( x \)[/tex]-component of the weight [tex]\( W_x \)[/tex] is the component of the weight parallel to the inclined plane. This can be calculated using:
[tex]\[ W_x = W \cdot \sin(\theta) \][/tex]
where [tex]\( \theta \)[/tex] is the incline angle in radians. Given [tex]\( W = 735.75 \, \text{N} \)[/tex] and [tex]\( \theta \approx 0.4887 \, \text{radians} \)[/tex],
[tex]\[ W_x = 735.75 \, \text{N} \times \sin(0.4887) \approx 345.41 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the weight of the crate is approximately [tex]\( 345.41 \, \text{N} \)[/tex].
1. Calculate the weight of the crate:
The weight [tex]\( W \)[/tex] of an object is given by the formula:
[tex]\[ W = m \cdot g \][/tex]
where [tex]\( m \)[/tex] is the mass of the crate and [tex]\( g \)[/tex] is the acceleration due to gravity.
For a mass [tex]\( m = 75.0 \)[/tex] kg and assuming [tex]\( g = 9.81 \)[/tex] m/s² (the acceleration due to gravity),
[tex]\[ W = 75.0 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 735.75 \, \text{N} \][/tex]
2. Convert the inclined angle from degrees to radians:
To find the component of the weight along the incline, we need to convert the angle from degrees to radians. The inclined angle of the ramp is [tex]\( 28.0^{\circ} \)[/tex].
We use the conversion:
[tex]\[ \text{angle in radians} = \text{angle in degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Thus,
[tex]\[ 28.0^{\circ} \times \left( \frac{\pi}{180} \right) \approx 0.4887 \, \text{radians} \][/tex]
3. Calculate the [tex]\( x \)[/tex]-component of the weight:
The [tex]\( x \)[/tex]-component of the weight [tex]\( W_x \)[/tex] is the component of the weight parallel to the inclined plane. This can be calculated using:
[tex]\[ W_x = W \cdot \sin(\theta) \][/tex]
where [tex]\( \theta \)[/tex] is the incline angle in radians. Given [tex]\( W = 735.75 \, \text{N} \)[/tex] and [tex]\( \theta \approx 0.4887 \, \text{radians} \)[/tex],
[tex]\[ W_x = 735.75 \, \text{N} \times \sin(0.4887) \approx 345.41 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the weight of the crate is approximately [tex]\( 345.41 \, \text{N} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.