Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To answer the question, we need to determine the appropriate name for the formula provided in the problem:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's analyze the options given:
1. Quadratic Formula:
The quadratic formula is specifically designed to find the solutions (roots) of a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex]. The formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
is indeed used to solve for [tex]\( x \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are coefficients of the quadratic equation.
2. Zero Product Property:
The Zero Product Property states that if the product of two numbers is zero, then at least one of the numbers must be zero. Symbolically, if [tex]\( ab = 0 \)[/tex], then either [tex]\( a = 0 \)[/tex] or [tex]\( b = 0 \)[/tex]. This property is used in different contexts, such as factoring quadratic equations, but it isn't the formula given.
3. Quadratic Inequality:
A quadratic inequality is an inequality which involves a quadratic expression, for example, [tex]\( ax^2 + bx + c > 0 \)[/tex]. Solving quadratic inequalities involves different techniques such as finding critical points and testing intervals, but it does not directly relate to the formula in question.
Therefore, the correct choice is:
1. Quadratic Formula
Hence, the provided formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
is known as the Quadratic Formula, and the best answer to the question is option 1, the Quadratic Formula.
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's analyze the options given:
1. Quadratic Formula:
The quadratic formula is specifically designed to find the solutions (roots) of a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex]. The formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
is indeed used to solve for [tex]\( x \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are coefficients of the quadratic equation.
2. Zero Product Property:
The Zero Product Property states that if the product of two numbers is zero, then at least one of the numbers must be zero. Symbolically, if [tex]\( ab = 0 \)[/tex], then either [tex]\( a = 0 \)[/tex] or [tex]\( b = 0 \)[/tex]. This property is used in different contexts, such as factoring quadratic equations, but it isn't the formula given.
3. Quadratic Inequality:
A quadratic inequality is an inequality which involves a quadratic expression, for example, [tex]\( ax^2 + bx + c > 0 \)[/tex]. Solving quadratic inequalities involves different techniques such as finding critical points and testing intervals, but it does not directly relate to the formula in question.
Therefore, the correct choice is:
1. Quadratic Formula
Hence, the provided formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
is known as the Quadratic Formula, and the best answer to the question is option 1, the Quadratic Formula.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.