Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to understand some fundamental properties of addition in mathematics. Let's examine each property listed in the options:
1. Commutative Property of Addition:
- This property states that the order in which two numbers are added does not change the sum. In other words, for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex].
2. Associative Property of Addition:
- This property states that the way in which numbers are grouped when adding does not change the sum. That is, for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], [tex]\((a + b) + c = a + (b + c)\)[/tex].
3. Inverse Property of Addition:
- This property states that for any number [tex]\(a\)[/tex], there exists another number, referred to as its additive inverse, such that when the number and its additive inverse are added together, the sum is zero. In other words, [tex]\(a + (-a) = 0\)[/tex].
Given the statement: "The Property of Addition states that for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex]," the property in question is describing the concept that the order of addition does not affect the sum.
Therefore, the best answer is:
Commutative
1. Commutative Property of Addition:
- This property states that the order in which two numbers are added does not change the sum. In other words, for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex].
2. Associative Property of Addition:
- This property states that the way in which numbers are grouped when adding does not change the sum. That is, for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], [tex]\((a + b) + c = a + (b + c)\)[/tex].
3. Inverse Property of Addition:
- This property states that for any number [tex]\(a\)[/tex], there exists another number, referred to as its additive inverse, such that when the number and its additive inverse are added together, the sum is zero. In other words, [tex]\(a + (-a) = 0\)[/tex].
Given the statement: "The Property of Addition states that for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex]," the property in question is describing the concept that the order of addition does not affect the sum.
Therefore, the best answer is:
Commutative
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.