Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to understand some fundamental properties of addition in mathematics. Let's examine each property listed in the options:
1. Commutative Property of Addition:
- This property states that the order in which two numbers are added does not change the sum. In other words, for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex].
2. Associative Property of Addition:
- This property states that the way in which numbers are grouped when adding does not change the sum. That is, for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], [tex]\((a + b) + c = a + (b + c)\)[/tex].
3. Inverse Property of Addition:
- This property states that for any number [tex]\(a\)[/tex], there exists another number, referred to as its additive inverse, such that when the number and its additive inverse are added together, the sum is zero. In other words, [tex]\(a + (-a) = 0\)[/tex].
Given the statement: "The Property of Addition states that for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex]," the property in question is describing the concept that the order of addition does not affect the sum.
Therefore, the best answer is:
Commutative
1. Commutative Property of Addition:
- This property states that the order in which two numbers are added does not change the sum. In other words, for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex].
2. Associative Property of Addition:
- This property states that the way in which numbers are grouped when adding does not change the sum. That is, for any numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], [tex]\((a + b) + c = a + (b + c)\)[/tex].
3. Inverse Property of Addition:
- This property states that for any number [tex]\(a\)[/tex], there exists another number, referred to as its additive inverse, such that when the number and its additive inverse are added together, the sum is zero. In other words, [tex]\(a + (-a) = 0\)[/tex].
Given the statement: "The Property of Addition states that for any numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex], [tex]\(a + b = b + a\)[/tex]," the property in question is describing the concept that the order of addition does not affect the sum.
Therefore, the best answer is:
Commutative
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.