Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Over the last semester, Mr. Freitas kept track of the number of student absences. Now that the semester is over, he wants to see if there is a linear relationship between the number of absences and a student's grade for the semester. The data he collected are given in the table below.

\begin{tabular}{|l|c|c|}
\hline
Student & \begin{tabular}{c}
Number of \\
Absences
\end{tabular} & \begin{tabular}{c}
Algebra \\
Grade (\%)
\end{tabular} \\
\hline
Albert & 2 & 87 \\
\hline
Brianna & 7 & 68 \\
\hline
Carlos & 3 & 90 \\
\hline
Diana & 1 & 92 \\
\hline
Elaine & 2 & 88 \\
\hline
Freddy & 3 & 73 \\
\hline
Giana & 10 & 60 \\
\hline
Helen & 0 & 93 \\
\hline
Irene & 6 & 70 \\
\hline
Jacob & 1 & 88 \\
\hline
\end{tabular}


Sagot :

Sure, let's analyze the data to determine if there is a linear relationship between the number of absences and the students' grades for the semester. The data provided are as follows:

[tex]\[ \begin{array}{|l|c|c|} \hline \text{Student} & \text{Number of Absences} & \text{Algebra Grade (\%)} \\ \hline \text{Albert} & 2 & 87 \\ \hline \text{Brianna} & 7 & 68 \\ \hline \text{Carlos} & 3 & 90 \\ \hline \text{Diana} & 1 & 92 \\ \hline \text{Elaine} & 2 & 88 \\ \hline \text{Freddy} & 3 & 73 \\ \hline \text{Giana} & 10 & 60 \\ \hline \text{Helen} & 0 & 93 \\ \hline \text{Irene} & 6 & 70 \\ \hline \text{Jacob} & 1 & 88 \\ \hline \end{array} \][/tex]

### Step 1: Calculate the Mean of Absences and Grades
First, we need to calculate the mean (average) for the number of absences and the students' grades.

The data for absences are: [tex]\(2, 7, 3, 1, 2, 3, 10, 0, 6, 1\)[/tex]
The data for grades are: [tex]\(87, 68, 90, 92, 88, 73, 60, 93, 70, 88\)[/tex]

To find the mean:
[tex]\[ \text{Mean of Absences} = \frac{2+7+3+1+2+3+10+0+6+1}{10} = \frac{35}{10} = 3.5 \][/tex]

[tex]\[ \text{Mean of Grades} = \frac{87+68+90+92+88+73+60+93+70+88}{10} = \frac{809}{10} = 80.9 \][/tex]

### Step 2: Calculate the Terms Needed for the Correlation Coefficient
Next, we will compute the individual deviations from the mean for both absences and grades, then determine the following terms needed for the correlation coefficient: the numerator, and the sum of the squared deviations for absences and grades.

#### Numerator
[tex]\[ \text{Numerator} = \sum (a_i - \text{mean of absences}) \times (g_i - \text{mean of grades}) \][/tex]
[tex]\[ = (2-3.5)(87-80.9) + (7-3.5)(68-80.9) + (3-3.5)(90-80.9) + (1-3.5)(92-80.9) + (2-3.5)(88-80.9) + \][/tex]
[tex]\[ (3-3.5)(73-80.9) + (10-3.5)(60-80.9) + (0-3.5)(93-80.9) + (6-3.5)(70-80.9) + (1-3.5)(88-80.9) \][/tex]
[tex]\[ = -1.5 \times 6.1 + 3.5 \times -12.9 + -0.5 \times 9.1 + -2.5 \times 11.1 + -1.5 \times 7.1 + \][/tex]
[tex]\[ -0.5 \times -7.9 + 6.5 \times -20.9 + -3.5 \times 12.1 + 2.5 \times -10.9 + -2.5 \times 7.1 \][/tex]
[tex]\[ = -9.15 - 45.15 - 4.55 - 27.75 -10.65 + 3.95 - 135.85 - 42.35 - 27.25 - 17.75 = -316.5 \][/tex]

#### Squared Differences
[tex]\[ \text{Squared Difference for Absences} = \sum (a_i - \text{mean of absences})^2 \][/tex]
[tex]\[ = (2-3.5)^2 + (7-3.5)^2 + (3-3.5)^2 + (1-3.5)^2 + (2-3.5)^2 + (3-3.5)^2 + (10-3.5)^2 + \][/tex]
[tex]\[ (0-3.5)^2 + (6-3.5)^2 + (1-3.5)^2 = 90.5 \][/tex]

[tex]\[ \text{Squared Difference for Grades} = \sum (g_i - \text{mean of grades})^2 \][/tex]
[tex]\[ = (87-80.9)^2 + (68-80.9)^2 + (90-80.9)^2 + (92-80.9)^2 + (88-80.9)^2 + (73-80.9)^2 + \][/tex]
[tex]\[ (60-80.9)^2 + (93-80.9)^2 + (70-80.9)^2 + (88-80.9)^2 = 1274.9 \][/tex]

### Step 3: Calculate the Correlation Coefficient
The correlation coefficient is given by:
[tex]\[ r = \frac{\text{Numerator}}{\sqrt{\text{Squared Diff. for Absences} \times \text{Squared Diff. for Grades}}} \][/tex]
[tex]\[ = \frac{-316.5}{\sqrt{90.5 \times 1274.9}} \][/tex]
[tex]\[ = \frac{-316.5}{\sqrt{115309.45}} \][/tex]
[tex]\[ = \frac{-316.5}{339.57} \][/tex]
[tex]\[ = -0.931775665670006 \][/tex]

### Conclusion
With a correlation coefficient of approximately [tex]\( -0.9318 \)[/tex], there is a strong negative linear relationship between the number of absences and the students' grades. This suggests that as the number of absences increases, the students' grades tend to decrease significantly.