Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Mia and Raul are trying to write the correct ratio to find [tex]\(\theta\)[/tex]. Mia says to use [tex]\sin \theta=\frac{2 \sqrt{5}}{5}[/tex]. Raul says to use [tex]\tan \theta=2[/tex].

Who is correct?
A. Mia is correct.
B. Raul is correct.
C. They are both incorrect.
D. They are both correct.

Sagot :

Let's analyze the problem step by step to determine if Mia and Raul's statements are correct.

### Step 1: Analyzing Mia's Statement

Mia claims:
[tex]\[ \sin \theta = \frac{2 \sqrt{5}}{5} \][/tex]

### Step 2: Analyzing Raul's Statement

Raul claims:
[tex]\[ \tan \theta = 2 \][/tex]

### Step 3: Finding [tex]\(\cos \theta\)[/tex] from [tex]\(\sin \theta\)[/tex]

We know that:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]

Given [tex]\(\sin \theta = \frac{2 \sqrt{5}}{5}\)[/tex], we can find [tex]\(\cos \theta\)[/tex]:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
[tex]\[ \cos^2 \theta = 1 - \left( \frac{2 \sqrt{5}}{5} \right)^2 \][/tex]
[tex]\[ \cos^2 \theta = 1 - \frac{20}{25} \][/tex]
[tex]\[ \cos^2 \theta = 1 - 0.8 \][/tex]
[tex]\[ \cos^2 \theta = 0.2 \][/tex]
[tex]\[ \cos \theta = \sqrt{0.2} \][/tex]

### Step 4: Calculating [tex]\(\tan \theta\)[/tex] using [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]

We know that:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]

Given [tex]\(\sin \theta = \frac{2 \sqrt{5}}{5}\)[/tex] and [tex]\(\cos \theta = \sqrt{0.2}\)[/tex]:
[tex]\[ \tan \theta = \frac{\frac{2 \sqrt{5}}{5}}{\sqrt{0.2}} \][/tex]

We can simplify the expression:
[tex]\[ \tan \theta = 2 \][/tex]

### Conclusion

- Mia claims that [tex]\(\sin \theta = \frac{2 \sqrt{5}}{5}\)[/tex]. This value is correct.
- Raul claims that [tex]\(\tan \theta = 2\)[/tex]. Using [tex]\(\sin \theta\)[/tex] and calculating the corresponding [tex]\(\tan \theta\)[/tex], this value is also correct.

Therefore, both Mia and Raul are correct.

### Answer:
They are both correct.