Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Which best describes the range of the function [tex]f(x)=\frac{2}{3}(6)^x[/tex] after it has been reflected over the [tex]x[/tex]-axis?

A. All real numbers
B. All real numbers less than 0
C. All real numbers greater than 0
D. All real numbers less than or equal to 0


Sagot :

Let's analyze the given function [tex]\( f(x) = \frac{2}{3} (6)^x \)[/tex] and see what happens when it is reflected over the [tex]\( x \)[/tex]-axis.

### Step-by-Step Solution:

1. Understand the Original Function:
The function [tex]\( f(x) = \frac{2}{3} (6)^x \)[/tex] is an exponential function with base 6. Since the base is a positive number greater than 1, and it's being multiplied by a positive constant [tex]\(\frac{2}{3}\)[/tex], the function [tex]\( f(x) \)[/tex] will always yield positive values for any real [tex]\( x \)[/tex].

2. Behavior of the Original Function:
For any real number [tex]\( x \)[/tex], [tex]\( 6^x \)[/tex] is always positive. When you multiply a positive number ([tex]\( 6^x \)[/tex]) by another positive number ([tex]\( \frac{2}{3} \)[/tex]), the result remains positive. Therefore, the range of the original function [tex]\( f(x) = \frac{2}{3} (6)^x \)[/tex] is all positive real numbers.

3. Reflection Over the [tex]\( x \)[/tex]-Axis:
Reflecting the function [tex]\( f(x) \)[/tex] over the [tex]\( x \)[/tex]-axis essentially means you take the negative of the original function:
[tex]\[ g(x) = -f(x) = -\left(\frac{2}{3} (6)^x\right) = -\frac{2}{3} (6)^x \][/tex]
When you reflect an exponential function over the [tex]\( x \)[/tex]-axis, each positive value of the original function becomes its negative counterpart.

4. Analyzing the Reflected Function:
After reflection, [tex]\( g(x) = -\frac{2}{3} (6)^x \)[/tex] will always be negative for any real number [tex]\( x \)[/tex]. This is because [tex]\( \frac{2}{3} (6)^x \)[/tex] is always positive, and multiplying it by -1 makes it always negative.

5. Determining the Range:
Since [tex]\( g(x) = -\frac{2}{3} (6)^x \)[/tex] takes all positive values from [tex]\( f(x) \)[/tex] and converts them to negative values, the range of [tex]\( g(x) \)[/tex] is all real numbers less than 0.

Therefore, the range of the function after it has been reflected over the [tex]\( x \)[/tex]-axis is best described as:

[tex]\[ \text{all real numbers less than 0} \][/tex]

So, the correct answer is:
### all real numbers less than 0