Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the radius [tex]\( r \)[/tex] of a circus tent composed of both a cone and a cylinder, given the volume [tex]\( V \)[/tex] and the heights [tex]\( h_1 \)[/tex] and [tex]\( h_2 \)[/tex] of the cone and the cylinder respectively, we start by examining the volume formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h_1 + \pi r^2 h_2 \][/tex]
Our goal is to isolate [tex]\( r \)[/tex] in terms of [tex]\( V \)[/tex], [tex]\( h_1 \)[/tex], and [tex]\( h_2 \)[/tex]. Here’s a step-by-step solution:
1. First, factor out the common term [tex]\( \pi r^2 \)[/tex] from the volume equation:
[tex]\[ V = \pi r^2 \left( \frac{1}{3} h_1 + h_2 \right) \][/tex]
2. Next, divide both sides of the equation by [tex]\( \pi \left( \frac{1}{3} h_1 + h_2 \right) \)[/tex] to isolate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{1}{3} h_1 + h_2 \right)} \][/tex]
3. To further simplify, combine the terms inside the denominator:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)} \][/tex]
4. Now solve for [tex]\( r \)[/tex] by taking the square root of both sides:
[tex]\[ r = \sqrt{\frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)}} \][/tex]
5. Simplify the expression slightly for clarity:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Therefore, the radius [tex]\( r \)[/tex] of the circus tent can be expressed in terms of the volume [tex]\( V \)[/tex], the height of the cone [tex]\( h_1 \)[/tex], and the height of the cylinder [tex]\( h_2 \)[/tex] as follows:
[tex]\[ r = \pm \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
This solution yields two possible values for [tex]\( r \)[/tex], one positive and one negative. Given that a radius cannot be negative in a real-world geometric context, the practical solution is:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Thus, this positive expression for [tex]\( r \)[/tex] provides the desired radius of the circus tent.
[tex]\[ V = \frac{1}{3} \pi r^2 h_1 + \pi r^2 h_2 \][/tex]
Our goal is to isolate [tex]\( r \)[/tex] in terms of [tex]\( V \)[/tex], [tex]\( h_1 \)[/tex], and [tex]\( h_2 \)[/tex]. Here’s a step-by-step solution:
1. First, factor out the common term [tex]\( \pi r^2 \)[/tex] from the volume equation:
[tex]\[ V = \pi r^2 \left( \frac{1}{3} h_1 + h_2 \right) \][/tex]
2. Next, divide both sides of the equation by [tex]\( \pi \left( \frac{1}{3} h_1 + h_2 \right) \)[/tex] to isolate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{1}{3} h_1 + h_2 \right)} \][/tex]
3. To further simplify, combine the terms inside the denominator:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)} \][/tex]
4. Now solve for [tex]\( r \)[/tex] by taking the square root of both sides:
[tex]\[ r = \sqrt{\frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)}} \][/tex]
5. Simplify the expression slightly for clarity:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Therefore, the radius [tex]\( r \)[/tex] of the circus tent can be expressed in terms of the volume [tex]\( V \)[/tex], the height of the cone [tex]\( h_1 \)[/tex], and the height of the cylinder [tex]\( h_2 \)[/tex] as follows:
[tex]\[ r = \pm \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
This solution yields two possible values for [tex]\( r \)[/tex], one positive and one negative. Given that a radius cannot be negative in a real-world geometric context, the practical solution is:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Thus, this positive expression for [tex]\( r \)[/tex] provides the desired radius of the circus tent.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.