At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the following gases diffuses the fastest — [tex]\(O_2\)[/tex], [tex]\(CH_4\)[/tex], [tex]\(CO_2\)[/tex], and [tex]\(Cl_2\)[/tex] — we can use Graham's Law of Diffusion. Graham's Law states that the rate of diffusion of a gas is inversely proportional to the square root of its molar mass. The formula for the rate of diffusion ([tex]\(r\)[/tex]) is given by:
[tex]\[ r \propto \frac{1}{\sqrt{M}} \][/tex]
where [tex]\(M\)[/tex] is the molar mass of the gas.
Let's break down the solution step by step.
1. List the molar masses of the gases:
- [tex]\(O_2\)[/tex]: 32 g/mol
- [tex]\(CH_4\)[/tex]: 16 g/mol
- [tex]\(CO_2\)[/tex]: 44 g/mol
- [tex]\(Cl_2\)[/tex]: 71 g/mol
2. Calculate the inverse of the square root of each molar mass:
- For [tex]\(O_2\)[/tex]:
[tex]\[ \text{Rate}_\text{O2} = \frac{1}{\sqrt{32}} \approx 0.1768 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(CH_4\)[/tex]:
[tex]\[ \text{Rate}_\text{CH4} = \frac{1}{\sqrt{16}} = 0.25 \][/tex]
- For [tex]\(CO_2\)[/tex]:
[tex]\[ \text{Rate}_\text{CO2} = \frac{1}{\sqrt{44}} \approx 0.1508 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(Cl_2\)[/tex]:
[tex]\[ \text{Rate}_\text{Cl2} = \frac{1}{\sqrt{71}} \approx 0.1187 \text{ (rounded to 4 significant figures)} \][/tex]
3. Compare the rates of diffusion:
- Rate of [tex]\(O_2\)[/tex]: 0.1768
- Rate of [tex]\(CH_4\)[/tex]: 0.25
- Rate of [tex]\(CO_2\)[/tex]: 0.1508
- Rate of [tex]\(Cl_2\)[/tex]: 0.1187
According to these calculated rates, [tex]\(CH_4\)[/tex] has the highest rate of diffusion because 0.25 is the largest value among the rates. Thus, [tex]\(CH_4\)[/tex] diffuses the fastest among the given gases.
Answer: [tex]\(CH_4\)[/tex]
[tex]\[ r \propto \frac{1}{\sqrt{M}} \][/tex]
where [tex]\(M\)[/tex] is the molar mass of the gas.
Let's break down the solution step by step.
1. List the molar masses of the gases:
- [tex]\(O_2\)[/tex]: 32 g/mol
- [tex]\(CH_4\)[/tex]: 16 g/mol
- [tex]\(CO_2\)[/tex]: 44 g/mol
- [tex]\(Cl_2\)[/tex]: 71 g/mol
2. Calculate the inverse of the square root of each molar mass:
- For [tex]\(O_2\)[/tex]:
[tex]\[ \text{Rate}_\text{O2} = \frac{1}{\sqrt{32}} \approx 0.1768 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(CH_4\)[/tex]:
[tex]\[ \text{Rate}_\text{CH4} = \frac{1}{\sqrt{16}} = 0.25 \][/tex]
- For [tex]\(CO_2\)[/tex]:
[tex]\[ \text{Rate}_\text{CO2} = \frac{1}{\sqrt{44}} \approx 0.1508 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(Cl_2\)[/tex]:
[tex]\[ \text{Rate}_\text{Cl2} = \frac{1}{\sqrt{71}} \approx 0.1187 \text{ (rounded to 4 significant figures)} \][/tex]
3. Compare the rates of diffusion:
- Rate of [tex]\(O_2\)[/tex]: 0.1768
- Rate of [tex]\(CH_4\)[/tex]: 0.25
- Rate of [tex]\(CO_2\)[/tex]: 0.1508
- Rate of [tex]\(Cl_2\)[/tex]: 0.1187
According to these calculated rates, [tex]\(CH_4\)[/tex] has the highest rate of diffusion because 0.25 is the largest value among the rates. Thus, [tex]\(CH_4\)[/tex] diffuses the fastest among the given gases.
Answer: [tex]\(CH_4\)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.