Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the following gases diffuses the fastest — [tex]\(O_2\)[/tex], [tex]\(CH_4\)[/tex], [tex]\(CO_2\)[/tex], and [tex]\(Cl_2\)[/tex] — we can use Graham's Law of Diffusion. Graham's Law states that the rate of diffusion of a gas is inversely proportional to the square root of its molar mass. The formula for the rate of diffusion ([tex]\(r\)[/tex]) is given by:
[tex]\[ r \propto \frac{1}{\sqrt{M}} \][/tex]
where [tex]\(M\)[/tex] is the molar mass of the gas.
Let's break down the solution step by step.
1. List the molar masses of the gases:
- [tex]\(O_2\)[/tex]: 32 g/mol
- [tex]\(CH_4\)[/tex]: 16 g/mol
- [tex]\(CO_2\)[/tex]: 44 g/mol
- [tex]\(Cl_2\)[/tex]: 71 g/mol
2. Calculate the inverse of the square root of each molar mass:
- For [tex]\(O_2\)[/tex]:
[tex]\[ \text{Rate}_\text{O2} = \frac{1}{\sqrt{32}} \approx 0.1768 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(CH_4\)[/tex]:
[tex]\[ \text{Rate}_\text{CH4} = \frac{1}{\sqrt{16}} = 0.25 \][/tex]
- For [tex]\(CO_2\)[/tex]:
[tex]\[ \text{Rate}_\text{CO2} = \frac{1}{\sqrt{44}} \approx 0.1508 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(Cl_2\)[/tex]:
[tex]\[ \text{Rate}_\text{Cl2} = \frac{1}{\sqrt{71}} \approx 0.1187 \text{ (rounded to 4 significant figures)} \][/tex]
3. Compare the rates of diffusion:
- Rate of [tex]\(O_2\)[/tex]: 0.1768
- Rate of [tex]\(CH_4\)[/tex]: 0.25
- Rate of [tex]\(CO_2\)[/tex]: 0.1508
- Rate of [tex]\(Cl_2\)[/tex]: 0.1187
According to these calculated rates, [tex]\(CH_4\)[/tex] has the highest rate of diffusion because 0.25 is the largest value among the rates. Thus, [tex]\(CH_4\)[/tex] diffuses the fastest among the given gases.
Answer: [tex]\(CH_4\)[/tex]
[tex]\[ r \propto \frac{1}{\sqrt{M}} \][/tex]
where [tex]\(M\)[/tex] is the molar mass of the gas.
Let's break down the solution step by step.
1. List the molar masses of the gases:
- [tex]\(O_2\)[/tex]: 32 g/mol
- [tex]\(CH_4\)[/tex]: 16 g/mol
- [tex]\(CO_2\)[/tex]: 44 g/mol
- [tex]\(Cl_2\)[/tex]: 71 g/mol
2. Calculate the inverse of the square root of each molar mass:
- For [tex]\(O_2\)[/tex]:
[tex]\[ \text{Rate}_\text{O2} = \frac{1}{\sqrt{32}} \approx 0.1768 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(CH_4\)[/tex]:
[tex]\[ \text{Rate}_\text{CH4} = \frac{1}{\sqrt{16}} = 0.25 \][/tex]
- For [tex]\(CO_2\)[/tex]:
[tex]\[ \text{Rate}_\text{CO2} = \frac{1}{\sqrt{44}} \approx 0.1508 \text{ (rounded to 4 significant figures)} \][/tex]
- For [tex]\(Cl_2\)[/tex]:
[tex]\[ \text{Rate}_\text{Cl2} = \frac{1}{\sqrt{71}} \approx 0.1187 \text{ (rounded to 4 significant figures)} \][/tex]
3. Compare the rates of diffusion:
- Rate of [tex]\(O_2\)[/tex]: 0.1768
- Rate of [tex]\(CH_4\)[/tex]: 0.25
- Rate of [tex]\(CO_2\)[/tex]: 0.1508
- Rate of [tex]\(Cl_2\)[/tex]: 0.1187
According to these calculated rates, [tex]\(CH_4\)[/tex] has the highest rate of diffusion because 0.25 is the largest value among the rates. Thus, [tex]\(CH_4\)[/tex] diffuses the fastest among the given gases.
Answer: [tex]\(CH_4\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.