Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the value of [tex]\( x \)[/tex], we need to set up equations for the perimeters of the rectangle and the equilateral triangle, and then equate them.
### Step-by-Step Solution
1. Perimeter of the Rectangle:
The rectangle has sides [tex]\(3x\)[/tex] and [tex]\(2x + 3\)[/tex].
The perimeter [tex]\(P_{\text{rectangle}}\)[/tex] of a rectangle is given by:
[tex]\[ P_{\text{rectangle}} = 2 \times (\text{length} + \text{width}) \][/tex]
Here, the length is [tex]\(3x\)[/tex] and the width is [tex]\(2x + 3\)[/tex]. Thus,
[tex]\[ P_{\text{rectangle}} = 2 \times (3x + (2x + 3)) = 2 \times (3x + 2x + 3) = 2 \times (5x + 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{rectangle}} = 10x + 6 \][/tex]
2. Perimeter of the Equilateral Triangle:
The side of the equilateral triangle is [tex]\(5x - 3\)[/tex].
The perimeter [tex]\(P_{\text{triangle}}\)[/tex] of an equilateral triangle is given by:
[tex]\[ P_{\text{triangle}} = 3 \times (\text{side}) \][/tex]
Here, the side is [tex]\(5x - 3\)[/tex]. Thus,
[tex]\[ P_{\text{triangle}} = 3 \times (5x - 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{triangle}} = 15x - 9 \][/tex]
3. Set Perimeters Equal to Each Other:
Since the perimeter of the rectangle is equal to the perimeter of the equilateral triangle, we set the two expressions equal to each other:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Rearrange the equation to isolate [tex]\(x\)[/tex]:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
Subtract [tex]\(10x\)[/tex] from both sides:
[tex]\[ 6 = 5x - 9 \][/tex]
Add 9 to both sides:
[tex]\[ 15 = 5x \][/tex]
Divide both sides by 5:
[tex]\[ x = 3 \][/tex]
Hence, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
### Step-by-Step Solution
1. Perimeter of the Rectangle:
The rectangle has sides [tex]\(3x\)[/tex] and [tex]\(2x + 3\)[/tex].
The perimeter [tex]\(P_{\text{rectangle}}\)[/tex] of a rectangle is given by:
[tex]\[ P_{\text{rectangle}} = 2 \times (\text{length} + \text{width}) \][/tex]
Here, the length is [tex]\(3x\)[/tex] and the width is [tex]\(2x + 3\)[/tex]. Thus,
[tex]\[ P_{\text{rectangle}} = 2 \times (3x + (2x + 3)) = 2 \times (3x + 2x + 3) = 2 \times (5x + 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{rectangle}} = 10x + 6 \][/tex]
2. Perimeter of the Equilateral Triangle:
The side of the equilateral triangle is [tex]\(5x - 3\)[/tex].
The perimeter [tex]\(P_{\text{triangle}}\)[/tex] of an equilateral triangle is given by:
[tex]\[ P_{\text{triangle}} = 3 \times (\text{side}) \][/tex]
Here, the side is [tex]\(5x - 3\)[/tex]. Thus,
[tex]\[ P_{\text{triangle}} = 3 \times (5x - 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{triangle}} = 15x - 9 \][/tex]
3. Set Perimeters Equal to Each Other:
Since the perimeter of the rectangle is equal to the perimeter of the equilateral triangle, we set the two expressions equal to each other:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Rearrange the equation to isolate [tex]\(x\)[/tex]:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
Subtract [tex]\(10x\)[/tex] from both sides:
[tex]\[ 6 = 5x - 9 \][/tex]
Add 9 to both sides:
[tex]\[ 15 = 5x \][/tex]
Divide both sides by 5:
[tex]\[ x = 3 \][/tex]
Hence, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.