Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the value of [tex]\( x \)[/tex], we need to set up equations for the perimeters of the rectangle and the equilateral triangle, and then equate them.
### Step-by-Step Solution
1. Perimeter of the Rectangle:
The rectangle has sides [tex]\(3x\)[/tex] and [tex]\(2x + 3\)[/tex].
The perimeter [tex]\(P_{\text{rectangle}}\)[/tex] of a rectangle is given by:
[tex]\[ P_{\text{rectangle}} = 2 \times (\text{length} + \text{width}) \][/tex]
Here, the length is [tex]\(3x\)[/tex] and the width is [tex]\(2x + 3\)[/tex]. Thus,
[tex]\[ P_{\text{rectangle}} = 2 \times (3x + (2x + 3)) = 2 \times (3x + 2x + 3) = 2 \times (5x + 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{rectangle}} = 10x + 6 \][/tex]
2. Perimeter of the Equilateral Triangle:
The side of the equilateral triangle is [tex]\(5x - 3\)[/tex].
The perimeter [tex]\(P_{\text{triangle}}\)[/tex] of an equilateral triangle is given by:
[tex]\[ P_{\text{triangle}} = 3 \times (\text{side}) \][/tex]
Here, the side is [tex]\(5x - 3\)[/tex]. Thus,
[tex]\[ P_{\text{triangle}} = 3 \times (5x - 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{triangle}} = 15x - 9 \][/tex]
3. Set Perimeters Equal to Each Other:
Since the perimeter of the rectangle is equal to the perimeter of the equilateral triangle, we set the two expressions equal to each other:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Rearrange the equation to isolate [tex]\(x\)[/tex]:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
Subtract [tex]\(10x\)[/tex] from both sides:
[tex]\[ 6 = 5x - 9 \][/tex]
Add 9 to both sides:
[tex]\[ 15 = 5x \][/tex]
Divide both sides by 5:
[tex]\[ x = 3 \][/tex]
Hence, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
### Step-by-Step Solution
1. Perimeter of the Rectangle:
The rectangle has sides [tex]\(3x\)[/tex] and [tex]\(2x + 3\)[/tex].
The perimeter [tex]\(P_{\text{rectangle}}\)[/tex] of a rectangle is given by:
[tex]\[ P_{\text{rectangle}} = 2 \times (\text{length} + \text{width}) \][/tex]
Here, the length is [tex]\(3x\)[/tex] and the width is [tex]\(2x + 3\)[/tex]. Thus,
[tex]\[ P_{\text{rectangle}} = 2 \times (3x + (2x + 3)) = 2 \times (3x + 2x + 3) = 2 \times (5x + 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{rectangle}} = 10x + 6 \][/tex]
2. Perimeter of the Equilateral Triangle:
The side of the equilateral triangle is [tex]\(5x - 3\)[/tex].
The perimeter [tex]\(P_{\text{triangle}}\)[/tex] of an equilateral triangle is given by:
[tex]\[ P_{\text{triangle}} = 3 \times (\text{side}) \][/tex]
Here, the side is [tex]\(5x - 3\)[/tex]. Thus,
[tex]\[ P_{\text{triangle}} = 3 \times (5x - 3) \][/tex]
Simplifying further,
[tex]\[ P_{\text{triangle}} = 15x - 9 \][/tex]
3. Set Perimeters Equal to Each Other:
Since the perimeter of the rectangle is equal to the perimeter of the equilateral triangle, we set the two expressions equal to each other:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Rearrange the equation to isolate [tex]\(x\)[/tex]:
[tex]\[ 10x + 6 = 15x - 9 \][/tex]
Subtract [tex]\(10x\)[/tex] from both sides:
[tex]\[ 6 = 5x - 9 \][/tex]
Add 9 to both sides:
[tex]\[ 15 = 5x \][/tex]
Divide both sides by 5:
[tex]\[ x = 3 \][/tex]
Hence, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.