Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which of the following points [tex]\((x, y)\)[/tex] lies on the graph of [tex]\(8x + 2y = 24\)[/tex]?

A. [tex]\((-1, 8)\)[/tex]
B. [tex]\((2, 8)\)[/tex]
C. [tex]\((6, -12)\)[/tex]
D. [tex]\((8, 2)\)[/tex]


Sagot :

To determine which of the given points lies on the graph of the equation [tex]\( 8x + 2y = 24 \)[/tex], we need to check if each point satisfies the equation. We can do this by substituting the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values of each point into the equation and seeing if the equation holds true.

Let's evaluate each point one by one:

1. Point [tex]\((-1, 8)\)[/tex]:
[tex]\[ 8(-1) + 2(8) = -8 + 16 = 8 \neq 24 \][/tex]
The point [tex]\((-1, 8)\)[/tex] does not satisfy the equation.

2. Point [tex]\((2, 8)\)[/tex]:
[tex]\[ 8(2) + 2(8) = 16 + 16 = 32 \neq 24 \][/tex]
The point [tex]\((2, 8)\)[/tex] does not satisfy the equation.

3. Point [tex]\((6, -12)\)[/tex]:
[tex]\[ 8(6) + 2(-12) = 48 - 24 = 24 \][/tex]
The point [tex]\((6, -12)\)[/tex] satisfies the equation.

4. Point [tex]\((8, 2)\)[/tex]:
[tex]\[ 8(8) + 2(2) = 64 + 4 = 68 \neq 24 \][/tex]
The point [tex]\((8, 2)\)[/tex] does not satisfy the equation.

After evaluating all the points, we find that the point [tex]\((6, -12)\)[/tex] is the only one that satisfies the equation [tex]\( 8x + 2y = 24 \)[/tex]. Therefore, the point [tex]\((6, -12)\)[/tex] lies on the graph of the given equation.