Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let's tackle this problem step by step. The question involves a chemical reaction between magnesium hydroxide ([tex]\( Mg(OH)_2 \)[/tex]) and hydrochloric acid ([tex]\( HCl \)[/tex]). The balanced chemical equation for this reaction is:
[tex]\[ Mg(OH)_2(aq) + 2HCl(aq) \rightarrow 2H_2O(l) + MgCl_2(aq) \][/tex]
Given:
- The moles of hydrochloric acid ([tex]\( HCl \)[/tex]) are 0.321 moles.
- We need to find out how many moles of magnesium hydroxide ([tex]\( Mg(OH)_2 \)[/tex]) are required to react with the given amount of hydrochloric acid.
From the balanced equation, we see that 1 mole of [tex]\( Mg(OH)_2 \)[/tex] reacts with 2 moles of [tex]\( HCl \)[/tex]. This gives us a stoichiometric ratio:
[tex]\[ \frac{1 \text{ mole of } Mg(OH)_2}{2 \text{ moles of } HCl} \][/tex]
To find the required moles of [tex]\( Mg(OH)_2 \)[/tex], we can set up the following proportion:
[tex]\[ \text{Required moles of } Mg(OH)_2 = \frac{\text{Given moles of } HCl}{\text{Stoichiometric ratio}} \][/tex]
Substitute the given values and the ratio:
[tex]\[ \text{Required moles of } Mg(OH)_2 = \frac{0.321 \text{ moles of } HCl}{2} \][/tex]
Simplify the fraction:
[tex]\[ \text{Required moles of } Mg(OH)_2 = 0.1605 \text{ moles} \][/tex]
Therefore, 0.1605 moles of magnesium hydroxide are required to react with 0.321 moles of hydrochloric acid.
[tex]\[ Mg(OH)_2(aq) + 2HCl(aq) \rightarrow 2H_2O(l) + MgCl_2(aq) \][/tex]
Given:
- The moles of hydrochloric acid ([tex]\( HCl \)[/tex]) are 0.321 moles.
- We need to find out how many moles of magnesium hydroxide ([tex]\( Mg(OH)_2 \)[/tex]) are required to react with the given amount of hydrochloric acid.
From the balanced equation, we see that 1 mole of [tex]\( Mg(OH)_2 \)[/tex] reacts with 2 moles of [tex]\( HCl \)[/tex]. This gives us a stoichiometric ratio:
[tex]\[ \frac{1 \text{ mole of } Mg(OH)_2}{2 \text{ moles of } HCl} \][/tex]
To find the required moles of [tex]\( Mg(OH)_2 \)[/tex], we can set up the following proportion:
[tex]\[ \text{Required moles of } Mg(OH)_2 = \frac{\text{Given moles of } HCl}{\text{Stoichiometric ratio}} \][/tex]
Substitute the given values and the ratio:
[tex]\[ \text{Required moles of } Mg(OH)_2 = \frac{0.321 \text{ moles of } HCl}{2} \][/tex]
Simplify the fraction:
[tex]\[ \text{Required moles of } Mg(OH)_2 = 0.1605 \text{ moles} \][/tex]
Therefore, 0.1605 moles of magnesium hydroxide are required to react with 0.321 moles of hydrochloric acid.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.