Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's analyze the statement provided:
If [tex]\( p = q \)[/tex], then [tex]\( p - r = q - r \)[/tex].
To determine the property of equality that justifies this statement, we need to understand each property provided as options.
1. Multiplication Property: This property states that if [tex]\( p = q \)[/tex], then [tex]\( p \times r = q \times r \)[/tex]. Clearly, this involves multiplication, not subtraction.
2. Reflexive Property: This property states that any number is equal to itself, i.e., [tex]\( p = p \)[/tex]. It doesn't relate to the subtraction between two sides of an equation.
3. Symmetric Property: This property states that if [tex]\( p = q \)[/tex], then [tex]\( q = p \)[/tex]. It involves switching the sides of the equation, not using subtraction.
4. Subtraction Property: This property states that if [tex]\( p = q \)[/tex], then subtracting the same amount [tex]\( r \)[/tex] from both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] results in [tex]\( p - r = q - r \)[/tex]. This exactly matches the given statement.
Therefore, the property of equality that justifies the statement "If [tex]\( p = q \)[/tex], then [tex]\( p - r = q - r \)[/tex]" is the Subtraction Property.
If [tex]\( p = q \)[/tex], then [tex]\( p - r = q - r \)[/tex].
To determine the property of equality that justifies this statement, we need to understand each property provided as options.
1. Multiplication Property: This property states that if [tex]\( p = q \)[/tex], then [tex]\( p \times r = q \times r \)[/tex]. Clearly, this involves multiplication, not subtraction.
2. Reflexive Property: This property states that any number is equal to itself, i.e., [tex]\( p = p \)[/tex]. It doesn't relate to the subtraction between two sides of an equation.
3. Symmetric Property: This property states that if [tex]\( p = q \)[/tex], then [tex]\( q = p \)[/tex]. It involves switching the sides of the equation, not using subtraction.
4. Subtraction Property: This property states that if [tex]\( p = q \)[/tex], then subtracting the same amount [tex]\( r \)[/tex] from both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] results in [tex]\( p - r = q - r \)[/tex]. This exactly matches the given statement.
Therefore, the property of equality that justifies the statement "If [tex]\( p = q \)[/tex], then [tex]\( p - r = q - r \)[/tex]" is the Subtraction Property.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.