Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the limit [tex]\(\lim _{n \rightarrow 1} \frac{n^3-1}{n^2-1}\)[/tex], we need to simplify the expression and then evaluate it as [tex]\(n\)[/tex] approaches 1.
### Step-by-Step Solution
1. Factor the numerator and the denominator:
- The numerator [tex]\(n^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ n^3 - 1 = (n - 1)(n^2 + n + 1) \][/tex]
- The denominator [tex]\(n^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ n^2 - 1 = (n - 1)(n + 1) \][/tex]
2. Substitute the factored forms:
[tex]\[ \frac{n^3 - 1}{n^2 - 1} = \frac{(n - 1)(n^2 + n + 1)}{(n - 1)(n + 1)} \][/tex]
3. Cancel the common factor [tex]\((n - 1)\)[/tex]:
Since [tex]\(n \neq 1\)[/tex], the [tex]\((n - 1)\)[/tex] terms in the numerator and denominator can be canceled out:
[tex]\[ \frac{(n - 1)(n^2 + n + 1)}{(n - 1)(n + 1)} = \frac{n^2 + n + 1}{n + 1} \][/tex]
4. Simplify the resulting expression:
Now, we have the simplified expression:
[tex]\[ \frac{n^2 + n + 1}{n + 1} \][/tex]
5. Evaluate the simplified expression as [tex]\(n\)[/tex] approaches 1:
Substitute [tex]\(n = 1\)[/tex] into the simplified expression:
- Numerator:
[tex]\[ 1^2 + 1 + 1 = 3 \][/tex]
- Denominator:
[tex]\[ 1 + 1 = 2 \][/tex]
Therefore, the expression evaluated at [tex]\(n = 1\)[/tex] is:
[tex]\[ \frac{3}{2} = 1.5 \][/tex]
### Conclusion
The limit is:
[tex]\[ \lim _{n \rightarrow 1} \frac{n^3-1}{n^2-1} = 1.5 \][/tex]
The detailed step-by-step solution shows that the limit of the given expression as [tex]\(n\)[/tex] approaches 1 is [tex]\(\boxed{1.5}\)[/tex].
### Step-by-Step Solution
1. Factor the numerator and the denominator:
- The numerator [tex]\(n^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ n^3 - 1 = (n - 1)(n^2 + n + 1) \][/tex]
- The denominator [tex]\(n^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ n^2 - 1 = (n - 1)(n + 1) \][/tex]
2. Substitute the factored forms:
[tex]\[ \frac{n^3 - 1}{n^2 - 1} = \frac{(n - 1)(n^2 + n + 1)}{(n - 1)(n + 1)} \][/tex]
3. Cancel the common factor [tex]\((n - 1)\)[/tex]:
Since [tex]\(n \neq 1\)[/tex], the [tex]\((n - 1)\)[/tex] terms in the numerator and denominator can be canceled out:
[tex]\[ \frac{(n - 1)(n^2 + n + 1)}{(n - 1)(n + 1)} = \frac{n^2 + n + 1}{n + 1} \][/tex]
4. Simplify the resulting expression:
Now, we have the simplified expression:
[tex]\[ \frac{n^2 + n + 1}{n + 1} \][/tex]
5. Evaluate the simplified expression as [tex]\(n\)[/tex] approaches 1:
Substitute [tex]\(n = 1\)[/tex] into the simplified expression:
- Numerator:
[tex]\[ 1^2 + 1 + 1 = 3 \][/tex]
- Denominator:
[tex]\[ 1 + 1 = 2 \][/tex]
Therefore, the expression evaluated at [tex]\(n = 1\)[/tex] is:
[tex]\[ \frac{3}{2} = 1.5 \][/tex]
### Conclusion
The limit is:
[tex]\[ \lim _{n \rightarrow 1} \frac{n^3-1}{n^2-1} = 1.5 \][/tex]
The detailed step-by-step solution shows that the limit of the given expression as [tex]\(n\)[/tex] approaches 1 is [tex]\(\boxed{1.5}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.