At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Given that [tex]\(\tan x = -\frac{8}{15}\)[/tex] and [tex]\(x\)[/tex] terminates in quadrant II, we will find [tex]\(\sin 2x\)[/tex], [tex]\(\cos 2x\)[/tex], and [tex]\(\tan 2x\)[/tex].
First, we need to determine the values of [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] based on the tangent value.
### Finding [tex]\(\cos x\)[/tex] and [tex]\(\sin x\)[/tex]:
Using the identity:
[tex]\[ 1 + \tan^2 x = \sec^2 x \][/tex]
Given [tex]\(\tan x = -\frac{8}{15}\)[/tex]:
[tex]\[ 1 + \left(-\frac{8}{15}\right)^2 = \sec^2 x \][/tex]
[tex]\[ 1 + \frac{64}{225} = \sec^2 x \][/tex]
[tex]\[ \sec^2 x = \frac{225}{225} + \frac{64}{225} = \frac{289}{225} \][/tex]
So, [tex]\(\sec x = \sqrt{\frac{289}{225}} = \frac{17}{15}\)[/tex].
Since [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]:
[tex]\[ \cos x = \frac{15}{17} \][/tex]
However, since [tex]\(x\)[/tex] is in quadrant II, [tex]\(\cos x\)[/tex] is negative:
[tex]\[ \cos x = -\frac{15}{17} \][/tex]
Next, using the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Since we already have [tex]\(\cos x = -\frac{15}{17}\)[/tex]:
[tex]\[ \sin^2 x + \left(-\frac{15}{17}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 x + \frac{225}{289} = 1 \][/tex]
[tex]\[ \sin^2 x = 1 - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{289}{289} - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{64}{289} \][/tex]
Thus:
[tex]\[ \sin x = \sqrt{\frac{64}{289}} = \frac{8}{17} \][/tex]
Since [tex]\(x\)[/tex] terminates in quadrant II, [tex]\(\sin x\)[/tex] is positive:
[tex]\[ \sin x = \frac{8}{17} \][/tex]
### Finding [tex]\(\sin 2x\)[/tex] and [tex]\(\cos 2x\)[/tex]:
Using the double angle identities:
[tex]\[ \sin 2x = 2 \sin x \cos x \][/tex]
[tex]\[ \sin 2x = 2 \left(\frac{8}{17}\right) \left(-\frac{15}{17}\right) \][/tex]
[tex]\[ \sin 2x = 2 \left(-\frac{120}{289}\right) \][/tex]
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
Next, for [tex]\(\cos 2x\)[/tex]:
[tex]\[ \cos 2x = \cos^2 x - \sin^2 x \][/tex]
[tex]\[ \cos 2x = \left(-\frac{15}{17}\right)^2 - \left(\frac{8}{17}\right)^2 \][/tex]
[tex]\[ \cos 2x = \frac{225}{289} - \frac{64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{225 - 64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
### Finding [tex]\(\tan 2x\)[/tex]:
Finally, using the identity:
[tex]\[ \tan 2x = \frac{\sin 2x}{\cos 2x} \][/tex]
[tex]\[ \tan 2x = \frac{-\frac{240}{289}}{\frac{161}{289}} \][/tex]
[tex]\[ \tan 2x = \frac{-240}{161} \][/tex]
Rewriting it as a simplified fraction:
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thus, the values are:
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
First, we need to determine the values of [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] based on the tangent value.
### Finding [tex]\(\cos x\)[/tex] and [tex]\(\sin x\)[/tex]:
Using the identity:
[tex]\[ 1 + \tan^2 x = \sec^2 x \][/tex]
Given [tex]\(\tan x = -\frac{8}{15}\)[/tex]:
[tex]\[ 1 + \left(-\frac{8}{15}\right)^2 = \sec^2 x \][/tex]
[tex]\[ 1 + \frac{64}{225} = \sec^2 x \][/tex]
[tex]\[ \sec^2 x = \frac{225}{225} + \frac{64}{225} = \frac{289}{225} \][/tex]
So, [tex]\(\sec x = \sqrt{\frac{289}{225}} = \frac{17}{15}\)[/tex].
Since [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]:
[tex]\[ \cos x = \frac{15}{17} \][/tex]
However, since [tex]\(x\)[/tex] is in quadrant II, [tex]\(\cos x\)[/tex] is negative:
[tex]\[ \cos x = -\frac{15}{17} \][/tex]
Next, using the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Since we already have [tex]\(\cos x = -\frac{15}{17}\)[/tex]:
[tex]\[ \sin^2 x + \left(-\frac{15}{17}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 x + \frac{225}{289} = 1 \][/tex]
[tex]\[ \sin^2 x = 1 - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{289}{289} - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{64}{289} \][/tex]
Thus:
[tex]\[ \sin x = \sqrt{\frac{64}{289}} = \frac{8}{17} \][/tex]
Since [tex]\(x\)[/tex] terminates in quadrant II, [tex]\(\sin x\)[/tex] is positive:
[tex]\[ \sin x = \frac{8}{17} \][/tex]
### Finding [tex]\(\sin 2x\)[/tex] and [tex]\(\cos 2x\)[/tex]:
Using the double angle identities:
[tex]\[ \sin 2x = 2 \sin x \cos x \][/tex]
[tex]\[ \sin 2x = 2 \left(\frac{8}{17}\right) \left(-\frac{15}{17}\right) \][/tex]
[tex]\[ \sin 2x = 2 \left(-\frac{120}{289}\right) \][/tex]
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
Next, for [tex]\(\cos 2x\)[/tex]:
[tex]\[ \cos 2x = \cos^2 x - \sin^2 x \][/tex]
[tex]\[ \cos 2x = \left(-\frac{15}{17}\right)^2 - \left(\frac{8}{17}\right)^2 \][/tex]
[tex]\[ \cos 2x = \frac{225}{289} - \frac{64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{225 - 64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
### Finding [tex]\(\tan 2x\)[/tex]:
Finally, using the identity:
[tex]\[ \tan 2x = \frac{\sin 2x}{\cos 2x} \][/tex]
[tex]\[ \tan 2x = \frac{-\frac{240}{289}}{\frac{161}{289}} \][/tex]
[tex]\[ \tan 2x = \frac{-240}{161} \][/tex]
Rewriting it as a simplified fraction:
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thus, the values are:
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.