Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the limit of the function [tex]\(\lim_{{n \to 2}} \frac{4-n^2}{3-\sqrt{n^2+5}}\)[/tex], we need to follow these steps:
1. Substitute the value where [tex]\( n \)[/tex] approaches into the expression:
Substitute [tex]\( n = 2 \)[/tex] into the function:
[tex]\[ \frac{4 - (2)^2}{3 - \sqrt{(2)^2 + 5}} \][/tex]
Evaluating inside the parentheses:
[tex]\[ \frac{4 - 4}{3 - \sqrt{4 + 5}} = \frac{0}{3 - \sqrt{9}} \][/tex]
Since [tex]\(\sqrt{9} = 3\)[/tex], we get:
[tex]\[ \frac{0}{3 - 3} = \frac{0}{0} \][/tex]
Because we get an indeterminate form [tex]\(\frac{0}{0}\)[/tex], we need to use algebraic techniques or L'Hôpital's rule to simplify this expression and find the limit.
2. Simplify the expression by factoring or rationalization:
Notice that the numerator [tex]\(4 - n^2\)[/tex] can be factored using the difference of squares:
[tex]\[ 4 - n^2 = (2 + n)(2 - n) \][/tex]
Therefore, the function becomes:
[tex]\[ \frac{(2 + n)(2 - n)}{3 - \sqrt{n^2 + 5}} \][/tex]
3. Rationalize the denominator:
To handle the square root, we rationalize the denominator by multiplying the numerator and the denominator by the conjugate of the denominator [tex]\(3 + \sqrt{n^2 + 5}\)[/tex]:
[tex]\[ \frac{(2 + n)(2 - n)}{3 - \sqrt{n^2+5}} \cdot \frac{3 + \sqrt{n^2+5}}{3 + \sqrt{n^2+5}} \][/tex]
Now, multiplying:
[tex]\[ \frac{(2 + n)(2 - n)(3 + \sqrt{n^2 + 5})}{(3 - \sqrt{n^2 + 5})(3 + \sqrt{n^2 + 5})} \][/tex]
The denominator is a difference of squares:
[tex]\[ (3 - \sqrt{n^2 + 5})(3 + \sqrt{n^2 + 5}) = 3^2 - (\sqrt{n^2+5})^2 = 9 - (n^2 + 5) = 9 - n^2 - 5 = 4 - n^2 \][/tex]
So the expression simplifies to:
[tex]\[ \frac{(2+n)(2-n)(3 + \sqrt{n^2 + 5})}{4 - n^2} \][/tex]
Since [tex]\(4 - n^2 = (2-n)(2+n)\)[/tex], the numerator and the denominator cancel out:
[tex]\[ \frac{\cancel{(2+n)(2-n)}(3 + \sqrt{n^2 + 5})}{\cancel{(2+n)(2-n)}} = 3 + \sqrt{n^2 + 5} \][/tex]
4. Substitute [tex]\( n \)[/tex] with the given value:
Now, substitute [tex]\( n = 2 \)[/tex] back into the simplified expression:
[tex]\[ 3 + \sqrt{(2)^2 + 5} = 3 + \sqrt{4 + 5} = 3 + \sqrt{9} = 3 + 3 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{{n \to 2}} \frac{4-n^2}{3-\sqrt{n^2+5}} = 6 \][/tex]
1. Substitute the value where [tex]\( n \)[/tex] approaches into the expression:
Substitute [tex]\( n = 2 \)[/tex] into the function:
[tex]\[ \frac{4 - (2)^2}{3 - \sqrt{(2)^2 + 5}} \][/tex]
Evaluating inside the parentheses:
[tex]\[ \frac{4 - 4}{3 - \sqrt{4 + 5}} = \frac{0}{3 - \sqrt{9}} \][/tex]
Since [tex]\(\sqrt{9} = 3\)[/tex], we get:
[tex]\[ \frac{0}{3 - 3} = \frac{0}{0} \][/tex]
Because we get an indeterminate form [tex]\(\frac{0}{0}\)[/tex], we need to use algebraic techniques or L'Hôpital's rule to simplify this expression and find the limit.
2. Simplify the expression by factoring or rationalization:
Notice that the numerator [tex]\(4 - n^2\)[/tex] can be factored using the difference of squares:
[tex]\[ 4 - n^2 = (2 + n)(2 - n) \][/tex]
Therefore, the function becomes:
[tex]\[ \frac{(2 + n)(2 - n)}{3 - \sqrt{n^2 + 5}} \][/tex]
3. Rationalize the denominator:
To handle the square root, we rationalize the denominator by multiplying the numerator and the denominator by the conjugate of the denominator [tex]\(3 + \sqrt{n^2 + 5}\)[/tex]:
[tex]\[ \frac{(2 + n)(2 - n)}{3 - \sqrt{n^2+5}} \cdot \frac{3 + \sqrt{n^2+5}}{3 + \sqrt{n^2+5}} \][/tex]
Now, multiplying:
[tex]\[ \frac{(2 + n)(2 - n)(3 + \sqrt{n^2 + 5})}{(3 - \sqrt{n^2 + 5})(3 + \sqrt{n^2 + 5})} \][/tex]
The denominator is a difference of squares:
[tex]\[ (3 - \sqrt{n^2 + 5})(3 + \sqrt{n^2 + 5}) = 3^2 - (\sqrt{n^2+5})^2 = 9 - (n^2 + 5) = 9 - n^2 - 5 = 4 - n^2 \][/tex]
So the expression simplifies to:
[tex]\[ \frac{(2+n)(2-n)(3 + \sqrt{n^2 + 5})}{4 - n^2} \][/tex]
Since [tex]\(4 - n^2 = (2-n)(2+n)\)[/tex], the numerator and the denominator cancel out:
[tex]\[ \frac{\cancel{(2+n)(2-n)}(3 + \sqrt{n^2 + 5})}{\cancel{(2+n)(2-n)}} = 3 + \sqrt{n^2 + 5} \][/tex]
4. Substitute [tex]\( n \)[/tex] with the given value:
Now, substitute [tex]\( n = 2 \)[/tex] back into the simplified expression:
[tex]\[ 3 + \sqrt{(2)^2 + 5} = 3 + \sqrt{4 + 5} = 3 + \sqrt{9} = 3 + 3 = 6 \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{{n \to 2}} \frac{4-n^2}{3-\sqrt{n^2+5}} = 6 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.