At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the final velocity of the truck as it slides down the frictionless hill, we'll follow these steps:
1. Identify the given values:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex] (not directly needed for this problem since we are dealing with a frictionless scenario).
- Initial velocity of the truck, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex].
- Length of the hill, [tex]\( d = 22.0 \, \text{m} \)[/tex].
- Angle of the hill, [tex]\( \theta = 8.30^\circ \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex].
2. Convert the hill angle from degrees to radians for the subsequent trigonometric calculations:
[tex]\[ \theta_{radians} = 0.14486232791552936 \, \text{radians} \][/tex]
3. Calculate the component of the gravitational acceleration along the hill:
The acceleration component parallel to the hill is given by:
[tex]\[ g_{\parallel} = g \sin(\theta) = 1.4161343318195472 \, \text{m/s}^2 \][/tex]
4. Apply the kinematic equation to find the final velocity:
The kinematic equation for an object initially moving with velocity [tex]\( v_i \)[/tex] and then accelerating over a distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2 a d \][/tex]
Here, [tex]\( a = g_{\parallel} \)[/tex], so:
[tex]\[ v_f^2 = v_i^2 + 2 \cdot g_{\parallel} \cdot d \][/tex]
Plugging in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \cdot 1.4161343318195472 \cdot 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.30991059634 = 84.49401060006008 \][/tex]
5. Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.49401060006008} \approx 9.192062369243372 \, \text{m/s} \][/tex]
Thus, the final velocity [tex]\( v_f \)[/tex] of the truck is approximately:
[tex]\[ v_f = 9.192 \, \text{m/s} (rounded to three significant digits) \][/tex]
1. Identify the given values:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex] (not directly needed for this problem since we are dealing with a frictionless scenario).
- Initial velocity of the truck, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex].
- Length of the hill, [tex]\( d = 22.0 \, \text{m} \)[/tex].
- Angle of the hill, [tex]\( \theta = 8.30^\circ \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex].
2. Convert the hill angle from degrees to radians for the subsequent trigonometric calculations:
[tex]\[ \theta_{radians} = 0.14486232791552936 \, \text{radians} \][/tex]
3. Calculate the component of the gravitational acceleration along the hill:
The acceleration component parallel to the hill is given by:
[tex]\[ g_{\parallel} = g \sin(\theta) = 1.4161343318195472 \, \text{m/s}^2 \][/tex]
4. Apply the kinematic equation to find the final velocity:
The kinematic equation for an object initially moving with velocity [tex]\( v_i \)[/tex] and then accelerating over a distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2 a d \][/tex]
Here, [tex]\( a = g_{\parallel} \)[/tex], so:
[tex]\[ v_f^2 = v_i^2 + 2 \cdot g_{\parallel} \cdot d \][/tex]
Plugging in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \cdot 1.4161343318195472 \cdot 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.30991059634 = 84.49401060006008 \][/tex]
5. Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.49401060006008} \approx 9.192062369243372 \, \text{m/s} \][/tex]
Thus, the final velocity [tex]\( v_f \)[/tex] of the truck is approximately:
[tex]\[ v_f = 9.192 \, \text{m/s} (rounded to three significant digits) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.