Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the final velocity of the truck as it slides down the frictionless hill, we'll follow these steps:
1. Identify the given values:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex] (not directly needed for this problem since we are dealing with a frictionless scenario).
- Initial velocity of the truck, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex].
- Length of the hill, [tex]\( d = 22.0 \, \text{m} \)[/tex].
- Angle of the hill, [tex]\( \theta = 8.30^\circ \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex].
2. Convert the hill angle from degrees to radians for the subsequent trigonometric calculations:
[tex]\[ \theta_{radians} = 0.14486232791552936 \, \text{radians} \][/tex]
3. Calculate the component of the gravitational acceleration along the hill:
The acceleration component parallel to the hill is given by:
[tex]\[ g_{\parallel} = g \sin(\theta) = 1.4161343318195472 \, \text{m/s}^2 \][/tex]
4. Apply the kinematic equation to find the final velocity:
The kinematic equation for an object initially moving with velocity [tex]\( v_i \)[/tex] and then accelerating over a distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2 a d \][/tex]
Here, [tex]\( a = g_{\parallel} \)[/tex], so:
[tex]\[ v_f^2 = v_i^2 + 2 \cdot g_{\parallel} \cdot d \][/tex]
Plugging in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \cdot 1.4161343318195472 \cdot 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.30991059634 = 84.49401060006008 \][/tex]
5. Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.49401060006008} \approx 9.192062369243372 \, \text{m/s} \][/tex]
Thus, the final velocity [tex]\( v_f \)[/tex] of the truck is approximately:
[tex]\[ v_f = 9.192 \, \text{m/s} (rounded to three significant digits) \][/tex]
1. Identify the given values:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex] (not directly needed for this problem since we are dealing with a frictionless scenario).
- Initial velocity of the truck, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex].
- Length of the hill, [tex]\( d = 22.0 \, \text{m} \)[/tex].
- Angle of the hill, [tex]\( \theta = 8.30^\circ \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex].
2. Convert the hill angle from degrees to radians for the subsequent trigonometric calculations:
[tex]\[ \theta_{radians} = 0.14486232791552936 \, \text{radians} \][/tex]
3. Calculate the component of the gravitational acceleration along the hill:
The acceleration component parallel to the hill is given by:
[tex]\[ g_{\parallel} = g \sin(\theta) = 1.4161343318195472 \, \text{m/s}^2 \][/tex]
4. Apply the kinematic equation to find the final velocity:
The kinematic equation for an object initially moving with velocity [tex]\( v_i \)[/tex] and then accelerating over a distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2 a d \][/tex]
Here, [tex]\( a = g_{\parallel} \)[/tex], so:
[tex]\[ v_f^2 = v_i^2 + 2 \cdot g_{\parallel} \cdot d \][/tex]
Plugging in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \cdot 1.4161343318195472 \cdot 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.30991059634 = 84.49401060006008 \][/tex]
5. Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.49401060006008} \approx 9.192062369243372 \, \text{m/s} \][/tex]
Thus, the final velocity [tex]\( v_f \)[/tex] of the truck is approximately:
[tex]\[ v_f = 9.192 \, \text{m/s} (rounded to three significant digits) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.