Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

A 3220 kg truck moving at [tex][tex]$4.71 \, m/s$[/tex][/tex] slides down a frictionless hill that is [tex][tex]$22.0 \, m$[/tex][/tex] long and inclined at [tex][tex]$8.30^{\circ}$[/tex][/tex].

What is the final velocity of the truck?
[tex]v_f = [?] \, m/s[/tex]


Sagot :

To find the final velocity of the truck as it slides down the frictionless hill, we'll follow these steps:

1. Identify the given values:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex] (not directly needed for this problem since we are dealing with a frictionless scenario).
- Initial velocity of the truck, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex].
- Length of the hill, [tex]\( d = 22.0 \, \text{m} \)[/tex].
- Angle of the hill, [tex]\( \theta = 8.30^\circ \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex].

2. Convert the hill angle from degrees to radians for the subsequent trigonometric calculations:
[tex]\[ \theta_{radians} = 0.14486232791552936 \, \text{radians} \][/tex]

3. Calculate the component of the gravitational acceleration along the hill:
The acceleration component parallel to the hill is given by:
[tex]\[ g_{\parallel} = g \sin(\theta) = 1.4161343318195472 \, \text{m/s}^2 \][/tex]

4. Apply the kinematic equation to find the final velocity:
The kinematic equation for an object initially moving with velocity [tex]\( v_i \)[/tex] and then accelerating over a distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2 a d \][/tex]
Here, [tex]\( a = g_{\parallel} \)[/tex], so:
[tex]\[ v_f^2 = v_i^2 + 2 \cdot g_{\parallel} \cdot d \][/tex]
Plugging in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \cdot 1.4161343318195472 \cdot 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.30991059634 = 84.49401060006008 \][/tex]

5. Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.49401060006008} \approx 9.192062369243372 \, \text{m/s} \][/tex]

Thus, the final velocity [tex]\( v_f \)[/tex] of the truck is approximately:
[tex]\[ v_f = 9.192 \, \text{m/s} (rounded to three significant digits) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.