Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's determine the correlation coefficient for the given data set and identify which option is the closest:
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & 19 \\ \hline 7 & 17 \\ \hline 10 & 16 \\ \hline 15 & 12 \\ \hline 19 & 7 \\ \hline \end{array} \][/tex]
Step-by-Step Solution:
1. Define the data points:
[tex]\[ x: [5, 7, 10, 15, 19] \][/tex]
[tex]\[ y: [19, 17, 16, 12, 7] \][/tex]
2. Calculate the means of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \bar{x} = \frac{5 + 7 + 10 + 15 + 19}{5} = \frac{56}{5} = 11.2 \][/tex]
[tex]\[ \bar{y} = \frac{19 + 17 + 16 + 12 + 7}{5} = \frac{71}{5} = 14.2 \][/tex]
3. Compute the covariance of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \text{Cov}(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]
First, we compute [tex]\((x_i - \bar{x})(y_i - \bar{y})\)[/tex] for each data point:
[tex]\[ (5 - 11.2)(19 - 14.2) = (-6.2)(4.8) = -29.76 \][/tex]
[tex]\[ (7 - 11.2)(17 - 14.2) = (-4.2)(2.8) = -11.76 \][/tex]
[tex]\[ (10 - 11.2)(16 - 14.2) = (-1.2)(1.8) = -2.16 \][/tex]
[tex]\[ (15 - 11.2)(12 - 14.2) = (3.8)(-2.2) = -8.36 \][/tex]
[tex]\[ (19 - 11.2)(7 - 14.2) = (7.8)(-7.2) = -56.16 \][/tex]
Sum these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = -29.76 - 11.76 - 2.16 - 8.36 - 56.16 = -108.2 \][/tex]
So then,
[tex]\[ \text{Cov}(x, y) = \frac{-108.2}{4} = -27.05 \][/tex]
4. Compute the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
Calculate [tex]\((x_i - \bar{x})^2\)[/tex] for each data point:
[tex]\[ (5 - 11.2)^2 = (-6.2)^2 = 38.44 \][/tex]
[tex]\[ (7 - 11.2)^2 = (-4.2)^2 = 17.64 \][/tex]
[tex]\[ (10 - 11.2)^2 = (-1.2)^2 = 1.44 \][/tex]
[tex]\[ (15 - 11.2)^2 = (3.8)^2 = 14.44 \][/tex]
[tex]\[ (19 - 11.2)^2 = (7.8)^2 = 60.84 \][/tex]
Sum these squares:
[tex]\[ \sum (x_i - \bar{x})^2 = 38.44 + 17.64 + 1.44 + 14.44 + 60.84 = 132.8 \][/tex]
Hence,
[tex]\[ \sigma_x = \sqrt{\frac{132.8}{4}} = \sqrt{33.2} \approx 5.76 \][/tex]
For [tex]\(y\)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \][/tex]
Calculate [tex]\((y_i - \bar{y})^2\)[/tex] for each data point:
[tex]\[ (19 - 14.2)^2 = (4.8)^2 = 23.04 \][/tex]
[tex]\[ (17 - 14.2)^2 = (2.8)^2 = 7.84 \][/tex]
[tex]\[ (16 - 14.2)^2 = (1.8)^2 = 3.24 \][/tex]
[tex]\[ (12 - 14.2)^2 = (-2.2)^2 = 4.84 \][/tex]
[tex]\[ (7 - 14.2)^2 = (-7.2)^2 = 51.84 \][/tex]
Sum these squares:
[tex]\[ \sum (y_i - \bar{y})^2 = 23.04 + 7.84 + 3.24 + 4.84 + 51.84 = 90.8 \][/tex]
Hence,
[tex]\[ \sigma_y = \sqrt{\frac{90.8}{4}} = \sqrt{22.7} \approx 4.76 \][/tex]
5. Finally, calculate the correlation coefficient [tex]\(r\)[/tex]:
[tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
Substitute in the values:
[tex]\[ r = \frac{-27.05}{5.76 \times 4.76} \approx \frac{-27.05}{27.38} \approx -0.99 \][/tex]
Based on the calculations, the correlation coefficient is approximately [tex]\(-0.99\)[/tex].
Comparing the calculated value to the given options:
A. -0.985
B. 0.985
C. 0.971
D. -0.971
The option that is closest to [tex]\(-0.99\)[/tex] is [tex]\(\boxed{-0.985}\)[/tex].
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & 19 \\ \hline 7 & 17 \\ \hline 10 & 16 \\ \hline 15 & 12 \\ \hline 19 & 7 \\ \hline \end{array} \][/tex]
Step-by-Step Solution:
1. Define the data points:
[tex]\[ x: [5, 7, 10, 15, 19] \][/tex]
[tex]\[ y: [19, 17, 16, 12, 7] \][/tex]
2. Calculate the means of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \bar{x} = \frac{5 + 7 + 10 + 15 + 19}{5} = \frac{56}{5} = 11.2 \][/tex]
[tex]\[ \bar{y} = \frac{19 + 17 + 16 + 12 + 7}{5} = \frac{71}{5} = 14.2 \][/tex]
3. Compute the covariance of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \text{Cov}(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]
First, we compute [tex]\((x_i - \bar{x})(y_i - \bar{y})\)[/tex] for each data point:
[tex]\[ (5 - 11.2)(19 - 14.2) = (-6.2)(4.8) = -29.76 \][/tex]
[tex]\[ (7 - 11.2)(17 - 14.2) = (-4.2)(2.8) = -11.76 \][/tex]
[tex]\[ (10 - 11.2)(16 - 14.2) = (-1.2)(1.8) = -2.16 \][/tex]
[tex]\[ (15 - 11.2)(12 - 14.2) = (3.8)(-2.2) = -8.36 \][/tex]
[tex]\[ (19 - 11.2)(7 - 14.2) = (7.8)(-7.2) = -56.16 \][/tex]
Sum these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = -29.76 - 11.76 - 2.16 - 8.36 - 56.16 = -108.2 \][/tex]
So then,
[tex]\[ \text{Cov}(x, y) = \frac{-108.2}{4} = -27.05 \][/tex]
4. Compute the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
Calculate [tex]\((x_i - \bar{x})^2\)[/tex] for each data point:
[tex]\[ (5 - 11.2)^2 = (-6.2)^2 = 38.44 \][/tex]
[tex]\[ (7 - 11.2)^2 = (-4.2)^2 = 17.64 \][/tex]
[tex]\[ (10 - 11.2)^2 = (-1.2)^2 = 1.44 \][/tex]
[tex]\[ (15 - 11.2)^2 = (3.8)^2 = 14.44 \][/tex]
[tex]\[ (19 - 11.2)^2 = (7.8)^2 = 60.84 \][/tex]
Sum these squares:
[tex]\[ \sum (x_i - \bar{x})^2 = 38.44 + 17.64 + 1.44 + 14.44 + 60.84 = 132.8 \][/tex]
Hence,
[tex]\[ \sigma_x = \sqrt{\frac{132.8}{4}} = \sqrt{33.2} \approx 5.76 \][/tex]
For [tex]\(y\)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \][/tex]
Calculate [tex]\((y_i - \bar{y})^2\)[/tex] for each data point:
[tex]\[ (19 - 14.2)^2 = (4.8)^2 = 23.04 \][/tex]
[tex]\[ (17 - 14.2)^2 = (2.8)^2 = 7.84 \][/tex]
[tex]\[ (16 - 14.2)^2 = (1.8)^2 = 3.24 \][/tex]
[tex]\[ (12 - 14.2)^2 = (-2.2)^2 = 4.84 \][/tex]
[tex]\[ (7 - 14.2)^2 = (-7.2)^2 = 51.84 \][/tex]
Sum these squares:
[tex]\[ \sum (y_i - \bar{y})^2 = 23.04 + 7.84 + 3.24 + 4.84 + 51.84 = 90.8 \][/tex]
Hence,
[tex]\[ \sigma_y = \sqrt{\frac{90.8}{4}} = \sqrt{22.7} \approx 4.76 \][/tex]
5. Finally, calculate the correlation coefficient [tex]\(r\)[/tex]:
[tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
Substitute in the values:
[tex]\[ r = \frac{-27.05}{5.76 \times 4.76} \approx \frac{-27.05}{27.38} \approx -0.99 \][/tex]
Based on the calculations, the correlation coefficient is approximately [tex]\(-0.99\)[/tex].
Comparing the calculated value to the given options:
A. -0.985
B. 0.985
C. 0.971
D. -0.971
The option that is closest to [tex]\(-0.99\)[/tex] is [tex]\(\boxed{-0.985}\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.