Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Use a calculator to find the correlation coefficient of the data set.

\begin{tabular}{|l|l|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
5 & 19 \\
\hline
7 & 17 \\
\hline
10 & 16 \\
\hline
15 & 12 \\
\hline
19 & 7 \\
\hline
\end{tabular}

A. -0.985

B. 0.985

C. 0.971

D. -0.971


Sagot :

Let's determine the correlation coefficient for the given data set and identify which option is the closest:

Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & 19 \\ \hline 7 & 17 \\ \hline 10 & 16 \\ \hline 15 & 12 \\ \hline 19 & 7 \\ \hline \end{array} \][/tex]

Step-by-Step Solution:

1. Define the data points:
[tex]\[ x: [5, 7, 10, 15, 19] \][/tex]
[tex]\[ y: [19, 17, 16, 12, 7] \][/tex]

2. Calculate the means of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \bar{x} = \frac{5 + 7 + 10 + 15 + 19}{5} = \frac{56}{5} = 11.2 \][/tex]
[tex]\[ \bar{y} = \frac{19 + 17 + 16 + 12 + 7}{5} = \frac{71}{5} = 14.2 \][/tex]

3. Compute the covariance of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \text{Cov}(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]
First, we compute [tex]\((x_i - \bar{x})(y_i - \bar{y})\)[/tex] for each data point:
[tex]\[ (5 - 11.2)(19 - 14.2) = (-6.2)(4.8) = -29.76 \][/tex]
[tex]\[ (7 - 11.2)(17 - 14.2) = (-4.2)(2.8) = -11.76 \][/tex]
[tex]\[ (10 - 11.2)(16 - 14.2) = (-1.2)(1.8) = -2.16 \][/tex]
[tex]\[ (15 - 11.2)(12 - 14.2) = (3.8)(-2.2) = -8.36 \][/tex]
[tex]\[ (19 - 11.2)(7 - 14.2) = (7.8)(-7.2) = -56.16 \][/tex]
Sum these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = -29.76 - 11.76 - 2.16 - 8.36 - 56.16 = -108.2 \][/tex]
So then,
[tex]\[ \text{Cov}(x, y) = \frac{-108.2}{4} = -27.05 \][/tex]

4. Compute the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
Calculate [tex]\((x_i - \bar{x})^2\)[/tex] for each data point:
[tex]\[ (5 - 11.2)^2 = (-6.2)^2 = 38.44 \][/tex]
[tex]\[ (7 - 11.2)^2 = (-4.2)^2 = 17.64 \][/tex]
[tex]\[ (10 - 11.2)^2 = (-1.2)^2 = 1.44 \][/tex]
[tex]\[ (15 - 11.2)^2 = (3.8)^2 = 14.44 \][/tex]
[tex]\[ (19 - 11.2)^2 = (7.8)^2 = 60.84 \][/tex]
Sum these squares:
[tex]\[ \sum (x_i - \bar{x})^2 = 38.44 + 17.64 + 1.44 + 14.44 + 60.84 = 132.8 \][/tex]
Hence,
[tex]\[ \sigma_x = \sqrt{\frac{132.8}{4}} = \sqrt{33.2} \approx 5.76 \][/tex]

For [tex]\(y\)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \][/tex]
Calculate [tex]\((y_i - \bar{y})^2\)[/tex] for each data point:
[tex]\[ (19 - 14.2)^2 = (4.8)^2 = 23.04 \][/tex]
[tex]\[ (17 - 14.2)^2 = (2.8)^2 = 7.84 \][/tex]
[tex]\[ (16 - 14.2)^2 = (1.8)^2 = 3.24 \][/tex]
[tex]\[ (12 - 14.2)^2 = (-2.2)^2 = 4.84 \][/tex]
[tex]\[ (7 - 14.2)^2 = (-7.2)^2 = 51.84 \][/tex]
Sum these squares:
[tex]\[ \sum (y_i - \bar{y})^2 = 23.04 + 7.84 + 3.24 + 4.84 + 51.84 = 90.8 \][/tex]
Hence,
[tex]\[ \sigma_y = \sqrt{\frac{90.8}{4}} = \sqrt{22.7} \approx 4.76 \][/tex]

5. Finally, calculate the correlation coefficient [tex]\(r\)[/tex]:
[tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
Substitute in the values:
[tex]\[ r = \frac{-27.05}{5.76 \times 4.76} \approx \frac{-27.05}{27.38} \approx -0.99 \][/tex]

Based on the calculations, the correlation coefficient is approximately [tex]\(-0.99\)[/tex].

Comparing the calculated value to the given options:
A. -0.985
B. 0.985
C. 0.971
D. -0.971

The option that is closest to [tex]\(-0.99\)[/tex] is [tex]\(\boxed{-0.985}\)[/tex].