Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's determine the correlation coefficient for the given data set and identify which option is the closest:
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & 19 \\ \hline 7 & 17 \\ \hline 10 & 16 \\ \hline 15 & 12 \\ \hline 19 & 7 \\ \hline \end{array} \][/tex]
Step-by-Step Solution:
1. Define the data points:
[tex]\[ x: [5, 7, 10, 15, 19] \][/tex]
[tex]\[ y: [19, 17, 16, 12, 7] \][/tex]
2. Calculate the means of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \bar{x} = \frac{5 + 7 + 10 + 15 + 19}{5} = \frac{56}{5} = 11.2 \][/tex]
[tex]\[ \bar{y} = \frac{19 + 17 + 16 + 12 + 7}{5} = \frac{71}{5} = 14.2 \][/tex]
3. Compute the covariance of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \text{Cov}(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]
First, we compute [tex]\((x_i - \bar{x})(y_i - \bar{y})\)[/tex] for each data point:
[tex]\[ (5 - 11.2)(19 - 14.2) = (-6.2)(4.8) = -29.76 \][/tex]
[tex]\[ (7 - 11.2)(17 - 14.2) = (-4.2)(2.8) = -11.76 \][/tex]
[tex]\[ (10 - 11.2)(16 - 14.2) = (-1.2)(1.8) = -2.16 \][/tex]
[tex]\[ (15 - 11.2)(12 - 14.2) = (3.8)(-2.2) = -8.36 \][/tex]
[tex]\[ (19 - 11.2)(7 - 14.2) = (7.8)(-7.2) = -56.16 \][/tex]
Sum these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = -29.76 - 11.76 - 2.16 - 8.36 - 56.16 = -108.2 \][/tex]
So then,
[tex]\[ \text{Cov}(x, y) = \frac{-108.2}{4} = -27.05 \][/tex]
4. Compute the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
Calculate [tex]\((x_i - \bar{x})^2\)[/tex] for each data point:
[tex]\[ (5 - 11.2)^2 = (-6.2)^2 = 38.44 \][/tex]
[tex]\[ (7 - 11.2)^2 = (-4.2)^2 = 17.64 \][/tex]
[tex]\[ (10 - 11.2)^2 = (-1.2)^2 = 1.44 \][/tex]
[tex]\[ (15 - 11.2)^2 = (3.8)^2 = 14.44 \][/tex]
[tex]\[ (19 - 11.2)^2 = (7.8)^2 = 60.84 \][/tex]
Sum these squares:
[tex]\[ \sum (x_i - \bar{x})^2 = 38.44 + 17.64 + 1.44 + 14.44 + 60.84 = 132.8 \][/tex]
Hence,
[tex]\[ \sigma_x = \sqrt{\frac{132.8}{4}} = \sqrt{33.2} \approx 5.76 \][/tex]
For [tex]\(y\)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \][/tex]
Calculate [tex]\((y_i - \bar{y})^2\)[/tex] for each data point:
[tex]\[ (19 - 14.2)^2 = (4.8)^2 = 23.04 \][/tex]
[tex]\[ (17 - 14.2)^2 = (2.8)^2 = 7.84 \][/tex]
[tex]\[ (16 - 14.2)^2 = (1.8)^2 = 3.24 \][/tex]
[tex]\[ (12 - 14.2)^2 = (-2.2)^2 = 4.84 \][/tex]
[tex]\[ (7 - 14.2)^2 = (-7.2)^2 = 51.84 \][/tex]
Sum these squares:
[tex]\[ \sum (y_i - \bar{y})^2 = 23.04 + 7.84 + 3.24 + 4.84 + 51.84 = 90.8 \][/tex]
Hence,
[tex]\[ \sigma_y = \sqrt{\frac{90.8}{4}} = \sqrt{22.7} \approx 4.76 \][/tex]
5. Finally, calculate the correlation coefficient [tex]\(r\)[/tex]:
[tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
Substitute in the values:
[tex]\[ r = \frac{-27.05}{5.76 \times 4.76} \approx \frac{-27.05}{27.38} \approx -0.99 \][/tex]
Based on the calculations, the correlation coefficient is approximately [tex]\(-0.99\)[/tex].
Comparing the calculated value to the given options:
A. -0.985
B. 0.985
C. 0.971
D. -0.971
The option that is closest to [tex]\(-0.99\)[/tex] is [tex]\(\boxed{-0.985}\)[/tex].
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & 19 \\ \hline 7 & 17 \\ \hline 10 & 16 \\ \hline 15 & 12 \\ \hline 19 & 7 \\ \hline \end{array} \][/tex]
Step-by-Step Solution:
1. Define the data points:
[tex]\[ x: [5, 7, 10, 15, 19] \][/tex]
[tex]\[ y: [19, 17, 16, 12, 7] \][/tex]
2. Calculate the means of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \bar{x} = \frac{5 + 7 + 10 + 15 + 19}{5} = \frac{56}{5} = 11.2 \][/tex]
[tex]\[ \bar{y} = \frac{19 + 17 + 16 + 12 + 7}{5} = \frac{71}{5} = 14.2 \][/tex]
3. Compute the covariance of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \text{Cov}(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]
First, we compute [tex]\((x_i - \bar{x})(y_i - \bar{y})\)[/tex] for each data point:
[tex]\[ (5 - 11.2)(19 - 14.2) = (-6.2)(4.8) = -29.76 \][/tex]
[tex]\[ (7 - 11.2)(17 - 14.2) = (-4.2)(2.8) = -11.76 \][/tex]
[tex]\[ (10 - 11.2)(16 - 14.2) = (-1.2)(1.8) = -2.16 \][/tex]
[tex]\[ (15 - 11.2)(12 - 14.2) = (3.8)(-2.2) = -8.36 \][/tex]
[tex]\[ (19 - 11.2)(7 - 14.2) = (7.8)(-7.2) = -56.16 \][/tex]
Sum these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = -29.76 - 11.76 - 2.16 - 8.36 - 56.16 = -108.2 \][/tex]
So then,
[tex]\[ \text{Cov}(x, y) = \frac{-108.2}{4} = -27.05 \][/tex]
4. Compute the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
Calculate [tex]\((x_i - \bar{x})^2\)[/tex] for each data point:
[tex]\[ (5 - 11.2)^2 = (-6.2)^2 = 38.44 \][/tex]
[tex]\[ (7 - 11.2)^2 = (-4.2)^2 = 17.64 \][/tex]
[tex]\[ (10 - 11.2)^2 = (-1.2)^2 = 1.44 \][/tex]
[tex]\[ (15 - 11.2)^2 = (3.8)^2 = 14.44 \][/tex]
[tex]\[ (19 - 11.2)^2 = (7.8)^2 = 60.84 \][/tex]
Sum these squares:
[tex]\[ \sum (x_i - \bar{x})^2 = 38.44 + 17.64 + 1.44 + 14.44 + 60.84 = 132.8 \][/tex]
Hence,
[tex]\[ \sigma_x = \sqrt{\frac{132.8}{4}} = \sqrt{33.2} \approx 5.76 \][/tex]
For [tex]\(y\)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}} \][/tex]
Calculate [tex]\((y_i - \bar{y})^2\)[/tex] for each data point:
[tex]\[ (19 - 14.2)^2 = (4.8)^2 = 23.04 \][/tex]
[tex]\[ (17 - 14.2)^2 = (2.8)^2 = 7.84 \][/tex]
[tex]\[ (16 - 14.2)^2 = (1.8)^2 = 3.24 \][/tex]
[tex]\[ (12 - 14.2)^2 = (-2.2)^2 = 4.84 \][/tex]
[tex]\[ (7 - 14.2)^2 = (-7.2)^2 = 51.84 \][/tex]
Sum these squares:
[tex]\[ \sum (y_i - \bar{y})^2 = 23.04 + 7.84 + 3.24 + 4.84 + 51.84 = 90.8 \][/tex]
Hence,
[tex]\[ \sigma_y = \sqrt{\frac{90.8}{4}} = \sqrt{22.7} \approx 4.76 \][/tex]
5. Finally, calculate the correlation coefficient [tex]\(r\)[/tex]:
[tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
Substitute in the values:
[tex]\[ r = \frac{-27.05}{5.76 \times 4.76} \approx \frac{-27.05}{27.38} \approx -0.99 \][/tex]
Based on the calculations, the correlation coefficient is approximately [tex]\(-0.99\)[/tex].
Comparing the calculated value to the given options:
A. -0.985
B. 0.985
C. 0.971
D. -0.971
The option that is closest to [tex]\(-0.99\)[/tex] is [tex]\(\boxed{-0.985}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.