Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the equation of the line tangent to the graph of [tex]\( f(x) = -2x^3 \)[/tex] at the point [tex]\((-1, 2)\)[/tex], we will follow a step-by-step procedure involving the calculation of the derivative, the slope at the point of tangency, and then using the point-slope form of the equation of a line.
1. Determine the function and the point of tangency:
- The function is [tex]\( f(x) = -2x^3 \)[/tex].
- The point of tangency is [tex]\((-1, 2)\)[/tex].
2. Find the derivative of [tex]\( f(x) \)[/tex]:
- To find the slope of the tangent line, we need the derivative of [tex]\( f(x) \)[/tex]. The derivative [tex]\( f'(x) \)[/tex] is given by:
[tex]\[ f'(x) = \frac{d}{dx} (-2x^3) = -6x^2 \][/tex]
3. Evaluate the derivative at the point of tangency (i.e., find the slope):
- The slope of the tangent line at [tex]\((-1, 2)\)[/tex] is given by [tex]\( f'(-1) \)[/tex]:
[tex]\[ f'(-1) = -6(-1)^2 = -6(-1) = -6 \][/tex]
- Therefore, the slope of the tangent line is [tex]\(-6\)[/tex].
4. Use the point-slope form of the equation of a line to find the tangent line:
- The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope, and [tex]\((x_1, y_1)\)[/tex] is the point of tangency.
- Substituting the values [tex]\( x_1 = -1 \)[/tex], [tex]\( y_1 = 2 \)[/tex], and [tex]\( m = -6 \)[/tex] into the equation, we have:
[tex]\[ y - 2 = -6(x - (-1)) \][/tex]
- Simplifying the equation:
[tex]\[ y - 2 = -6(x + 1) \][/tex]
[tex]\[ y - 2 = -6x - 6 \][/tex]
[tex]\[ y = -6x - 6 + 2 \][/tex]
[tex]\[ y = -6x - 4 \][/tex]
Therefore, the equation of the tangent line at the point [tex]\((-1, 2)\)[/tex] is:
[tex]\[ y = -6x - 4 \][/tex]
So, in the question formatting style:
The equation of the tangent line is [tex]\( y = -6x - 4 \)[/tex].
1. Determine the function and the point of tangency:
- The function is [tex]\( f(x) = -2x^3 \)[/tex].
- The point of tangency is [tex]\((-1, 2)\)[/tex].
2. Find the derivative of [tex]\( f(x) \)[/tex]:
- To find the slope of the tangent line, we need the derivative of [tex]\( f(x) \)[/tex]. The derivative [tex]\( f'(x) \)[/tex] is given by:
[tex]\[ f'(x) = \frac{d}{dx} (-2x^3) = -6x^2 \][/tex]
3. Evaluate the derivative at the point of tangency (i.e., find the slope):
- The slope of the tangent line at [tex]\((-1, 2)\)[/tex] is given by [tex]\( f'(-1) \)[/tex]:
[tex]\[ f'(-1) = -6(-1)^2 = -6(-1) = -6 \][/tex]
- Therefore, the slope of the tangent line is [tex]\(-6\)[/tex].
4. Use the point-slope form of the equation of a line to find the tangent line:
- The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope, and [tex]\((x_1, y_1)\)[/tex] is the point of tangency.
- Substituting the values [tex]\( x_1 = -1 \)[/tex], [tex]\( y_1 = 2 \)[/tex], and [tex]\( m = -6 \)[/tex] into the equation, we have:
[tex]\[ y - 2 = -6(x - (-1)) \][/tex]
- Simplifying the equation:
[tex]\[ y - 2 = -6(x + 1) \][/tex]
[tex]\[ y - 2 = -6x - 6 \][/tex]
[tex]\[ y = -6x - 6 + 2 \][/tex]
[tex]\[ y = -6x - 4 \][/tex]
Therefore, the equation of the tangent line at the point [tex]\((-1, 2)\)[/tex] is:
[tex]\[ y = -6x - 4 \][/tex]
So, in the question formatting style:
The equation of the tangent line is [tex]\( y = -6x - 4 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.