At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the distance covered by the spaceship, we need to follow these steps:
1. Determine the acceleration:
We know the initial velocity ([tex]\(v_i\)[/tex]), final velocity ([tex]\(v_f\)[/tex]), and time ([tex]\(t\)[/tex]):
- [tex]\(v_i = 58.0\)[/tex] meters/second
- [tex]\(v_f = 153.0\)[/tex] meters/second
- [tex]\(t = 12.0\)[/tex] seconds
The formula for acceleration ([tex]\(a\)[/tex]) when the velocities and time are known is:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the given values:
[tex]\[ a = \frac{153.0 - 58.0}{12.0} \][/tex]
[tex]\[ a \approx 7.916666666666667 \, \text{meters/second}^2 \][/tex]
2. Calculate the distance:
The formula for distance ([tex]\(d\)[/tex]) covered under uniform acceleration is:
[tex]\[ d = v_i \cdot t + \frac{1}{2} a \cdot t^2 \][/tex]
Using the known values and the calculated acceleration:
[tex]\[ d = 58.0 \cdot 12.0 + \frac{1}{2} \cdot 7.916666666666667 \cdot (12.0)^2 \][/tex]
Breaking it into parts:
[tex]\[ \text{First term: } 58.0 \cdot 12.0 = 696.0 \, \text{meters} \][/tex]
[tex]\[ \text{Second term: } \frac{1}{2} \cdot 7.916666666666667 \cdot 144.0 = 570.0 \, \text{meters} \][/tex]
Adding these two parts together:
[tex]\[ d = 696.0 + 570.0 = 1266.0 \, \text{meters} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.27 \times 10^3 \, \text{meters}} \][/tex]
Therefore, the correct choice is:
B. [tex]\(1.27 \times 10^3\)[/tex] meters
1. Determine the acceleration:
We know the initial velocity ([tex]\(v_i\)[/tex]), final velocity ([tex]\(v_f\)[/tex]), and time ([tex]\(t\)[/tex]):
- [tex]\(v_i = 58.0\)[/tex] meters/second
- [tex]\(v_f = 153.0\)[/tex] meters/second
- [tex]\(t = 12.0\)[/tex] seconds
The formula for acceleration ([tex]\(a\)[/tex]) when the velocities and time are known is:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the given values:
[tex]\[ a = \frac{153.0 - 58.0}{12.0} \][/tex]
[tex]\[ a \approx 7.916666666666667 \, \text{meters/second}^2 \][/tex]
2. Calculate the distance:
The formula for distance ([tex]\(d\)[/tex]) covered under uniform acceleration is:
[tex]\[ d = v_i \cdot t + \frac{1}{2} a \cdot t^2 \][/tex]
Using the known values and the calculated acceleration:
[tex]\[ d = 58.0 \cdot 12.0 + \frac{1}{2} \cdot 7.916666666666667 \cdot (12.0)^2 \][/tex]
Breaking it into parts:
[tex]\[ \text{First term: } 58.0 \cdot 12.0 = 696.0 \, \text{meters} \][/tex]
[tex]\[ \text{Second term: } \frac{1}{2} \cdot 7.916666666666667 \cdot 144.0 = 570.0 \, \text{meters} \][/tex]
Adding these two parts together:
[tex]\[ d = 696.0 + 570.0 = 1266.0 \, \text{meters} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.27 \times 10^3 \, \text{meters}} \][/tex]
Therefore, the correct choice is:
B. [tex]\(1.27 \times 10^3\)[/tex] meters
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.