Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the distance covered by the spaceship, we need to follow these steps:
1. Determine the acceleration:
We know the initial velocity ([tex]\(v_i\)[/tex]), final velocity ([tex]\(v_f\)[/tex]), and time ([tex]\(t\)[/tex]):
- [tex]\(v_i = 58.0\)[/tex] meters/second
- [tex]\(v_f = 153.0\)[/tex] meters/second
- [tex]\(t = 12.0\)[/tex] seconds
The formula for acceleration ([tex]\(a\)[/tex]) when the velocities and time are known is:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the given values:
[tex]\[ a = \frac{153.0 - 58.0}{12.0} \][/tex]
[tex]\[ a \approx 7.916666666666667 \, \text{meters/second}^2 \][/tex]
2. Calculate the distance:
The formula for distance ([tex]\(d\)[/tex]) covered under uniform acceleration is:
[tex]\[ d = v_i \cdot t + \frac{1}{2} a \cdot t^2 \][/tex]
Using the known values and the calculated acceleration:
[tex]\[ d = 58.0 \cdot 12.0 + \frac{1}{2} \cdot 7.916666666666667 \cdot (12.0)^2 \][/tex]
Breaking it into parts:
[tex]\[ \text{First term: } 58.0 \cdot 12.0 = 696.0 \, \text{meters} \][/tex]
[tex]\[ \text{Second term: } \frac{1}{2} \cdot 7.916666666666667 \cdot 144.0 = 570.0 \, \text{meters} \][/tex]
Adding these two parts together:
[tex]\[ d = 696.0 + 570.0 = 1266.0 \, \text{meters} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.27 \times 10^3 \, \text{meters}} \][/tex]
Therefore, the correct choice is:
B. [tex]\(1.27 \times 10^3\)[/tex] meters
1. Determine the acceleration:
We know the initial velocity ([tex]\(v_i\)[/tex]), final velocity ([tex]\(v_f\)[/tex]), and time ([tex]\(t\)[/tex]):
- [tex]\(v_i = 58.0\)[/tex] meters/second
- [tex]\(v_f = 153.0\)[/tex] meters/second
- [tex]\(t = 12.0\)[/tex] seconds
The formula for acceleration ([tex]\(a\)[/tex]) when the velocities and time are known is:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the given values:
[tex]\[ a = \frac{153.0 - 58.0}{12.0} \][/tex]
[tex]\[ a \approx 7.916666666666667 \, \text{meters/second}^2 \][/tex]
2. Calculate the distance:
The formula for distance ([tex]\(d\)[/tex]) covered under uniform acceleration is:
[tex]\[ d = v_i \cdot t + \frac{1}{2} a \cdot t^2 \][/tex]
Using the known values and the calculated acceleration:
[tex]\[ d = 58.0 \cdot 12.0 + \frac{1}{2} \cdot 7.916666666666667 \cdot (12.0)^2 \][/tex]
Breaking it into parts:
[tex]\[ \text{First term: } 58.0 \cdot 12.0 = 696.0 \, \text{meters} \][/tex]
[tex]\[ \text{Second term: } \frac{1}{2} \cdot 7.916666666666667 \cdot 144.0 = 570.0 \, \text{meters} \][/tex]
Adding these two parts together:
[tex]\[ d = 696.0 + 570.0 = 1266.0 \, \text{meters} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.27 \times 10^3 \, \text{meters}} \][/tex]
Therefore, the correct choice is:
B. [tex]\(1.27 \times 10^3\)[/tex] meters
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.