Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the statement [tex]\(\frac{d}{d x}(\ln (10)) = \frac{1}{10}\)[/tex] is true or false, let's consider what [tex]\(\ln(10)\)[/tex] represents and how differentiation works.
1. Understanding the Function:
[tex]\(\ln(10)\)[/tex] is the natural logarithm of the constant [tex]\(10\)[/tex]. This is a fixed value and does not depend on the variable [tex]\(x\)[/tex].
2. Differentiation of a Constant:
When we differentiate a constant with respect to a variable [tex]\(x\)[/tex], the result is always zero. This is because a constant does not change, so its rate of change (or derivative) is zero.
3. Step-by-Step Solution:
- The expression [tex]\(\ln(10)\)[/tex] is a constant.
- The derivative of any constant [tex]\(C\)[/tex] with respect to [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
- Therefore, [tex]\(\frac{d}{d x}(\ln(10)) = 0\)[/tex].
However, the statement given is [tex]\(\frac{d}{d x}(\ln(10)) = \frac{1}{10}\)[/tex], which suggests that the derivative of [tex]\(\ln(10)\)[/tex] is [tex]\(\frac{1}{10}\)[/tex].
This is incorrect because the derivative of a constant should be zero, not [tex]\(\frac{1}{10}\)[/tex].
Thus, the statement is False.
1. Understanding the Function:
[tex]\(\ln(10)\)[/tex] is the natural logarithm of the constant [tex]\(10\)[/tex]. This is a fixed value and does not depend on the variable [tex]\(x\)[/tex].
2. Differentiation of a Constant:
When we differentiate a constant with respect to a variable [tex]\(x\)[/tex], the result is always zero. This is because a constant does not change, so its rate of change (or derivative) is zero.
3. Step-by-Step Solution:
- The expression [tex]\(\ln(10)\)[/tex] is a constant.
- The derivative of any constant [tex]\(C\)[/tex] with respect to [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
- Therefore, [tex]\(\frac{d}{d x}(\ln(10)) = 0\)[/tex].
However, the statement given is [tex]\(\frac{d}{d x}(\ln(10)) = \frac{1}{10}\)[/tex], which suggests that the derivative of [tex]\(\ln(10)\)[/tex] is [tex]\(\frac{1}{10}\)[/tex].
This is incorrect because the derivative of a constant should be zero, not [tex]\(\frac{1}{10}\)[/tex].
Thus, the statement is False.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.