Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine whether the statement [tex]\(\frac{d}{d x}(\ln (10)) = \frac{1}{10}\)[/tex] is true or false, let's consider what [tex]\(\ln(10)\)[/tex] represents and how differentiation works.
1. Understanding the Function:
[tex]\(\ln(10)\)[/tex] is the natural logarithm of the constant [tex]\(10\)[/tex]. This is a fixed value and does not depend on the variable [tex]\(x\)[/tex].
2. Differentiation of a Constant:
When we differentiate a constant with respect to a variable [tex]\(x\)[/tex], the result is always zero. This is because a constant does not change, so its rate of change (or derivative) is zero.
3. Step-by-Step Solution:
- The expression [tex]\(\ln(10)\)[/tex] is a constant.
- The derivative of any constant [tex]\(C\)[/tex] with respect to [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
- Therefore, [tex]\(\frac{d}{d x}(\ln(10)) = 0\)[/tex].
However, the statement given is [tex]\(\frac{d}{d x}(\ln(10)) = \frac{1}{10}\)[/tex], which suggests that the derivative of [tex]\(\ln(10)\)[/tex] is [tex]\(\frac{1}{10}\)[/tex].
This is incorrect because the derivative of a constant should be zero, not [tex]\(\frac{1}{10}\)[/tex].
Thus, the statement is False.
1. Understanding the Function:
[tex]\(\ln(10)\)[/tex] is the natural logarithm of the constant [tex]\(10\)[/tex]. This is a fixed value and does not depend on the variable [tex]\(x\)[/tex].
2. Differentiation of a Constant:
When we differentiate a constant with respect to a variable [tex]\(x\)[/tex], the result is always zero. This is because a constant does not change, so its rate of change (or derivative) is zero.
3. Step-by-Step Solution:
- The expression [tex]\(\ln(10)\)[/tex] is a constant.
- The derivative of any constant [tex]\(C\)[/tex] with respect to [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
- Therefore, [tex]\(\frac{d}{d x}(\ln(10)) = 0\)[/tex].
However, the statement given is [tex]\(\frac{d}{d x}(\ln(10)) = \frac{1}{10}\)[/tex], which suggests that the derivative of [tex]\(\ln(10)\)[/tex] is [tex]\(\frac{1}{10}\)[/tex].
This is incorrect because the derivative of a constant should be zero, not [tex]\(\frac{1}{10}\)[/tex].
Thus, the statement is False.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.