Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's differentiate the function [tex]\( y = \ln(e^x + x e^x) \)[/tex].
To find [tex]\( y' \)[/tex], we'll need to use the chain rule and the properties of logarithms and exponential functions.
1. Identify the inner function:
[tex]\[ u = e^x + x e^x \][/tex]
2. Differentiate the natural logarithm:
According to the chain rule:
[tex]\[ y = \ln(u) \implies \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
3. Differentiate the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = e^x + x e^x \][/tex]
Using the product rule for [tex]\( x e^x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x e^x) \][/tex]
The derivative of [tex]\( e^x \)[/tex] is [tex]\( e^x \)[/tex]:
[tex]\[ \frac{d}{dx}(e^x) = e^x \][/tex]
To differentiate [tex]\( x e^x \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(x e^x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x) = x e^x + e^x \][/tex]
Combining these results:
[tex]\[ \frac{du}{dx} = e^x + (x e^x + e^x) = e^x + x e^x + e^x = x e^x + 2e^x \][/tex]
4. Substitute [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( u \)[/tex] into the chain rule expression:
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{e^x + x e^x} \cdot (x e^x + 2 e^x) \][/tex]
5. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{x e^x + 2 e^x}{e^x + x e^x} \][/tex]
Orthogonalizing terms we get:
[tex]\[ \frac{dy}{dx} = \frac{(x + 2) e^x}{(x + 1) e^x} \][/tex]
6. Cancel out the common [tex]\( e^x \)[/tex] factor in the numerator and the denominator:
[tex]\[ \frac{dy}{dx} = \frac{x + 2}{x + 1} \][/tex]
Hence, the derivative of the function [tex]\( y = \ln(e^x + x e^x) \)[/tex] is:
[tex]\[ y' = \frac{x e^x + 2 e^x}{x e^x + e^x} \][/tex]
To find [tex]\( y' \)[/tex], we'll need to use the chain rule and the properties of logarithms and exponential functions.
1. Identify the inner function:
[tex]\[ u = e^x + x e^x \][/tex]
2. Differentiate the natural logarithm:
According to the chain rule:
[tex]\[ y = \ln(u) \implies \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
3. Differentiate the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = e^x + x e^x \][/tex]
Using the product rule for [tex]\( x e^x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x e^x) \][/tex]
The derivative of [tex]\( e^x \)[/tex] is [tex]\( e^x \)[/tex]:
[tex]\[ \frac{d}{dx}(e^x) = e^x \][/tex]
To differentiate [tex]\( x e^x \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(x e^x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x) = x e^x + e^x \][/tex]
Combining these results:
[tex]\[ \frac{du}{dx} = e^x + (x e^x + e^x) = e^x + x e^x + e^x = x e^x + 2e^x \][/tex]
4. Substitute [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( u \)[/tex] into the chain rule expression:
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{e^x + x e^x} \cdot (x e^x + 2 e^x) \][/tex]
5. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{x e^x + 2 e^x}{e^x + x e^x} \][/tex]
Orthogonalizing terms we get:
[tex]\[ \frac{dy}{dx} = \frac{(x + 2) e^x}{(x + 1) e^x} \][/tex]
6. Cancel out the common [tex]\( e^x \)[/tex] factor in the numerator and the denominator:
[tex]\[ \frac{dy}{dx} = \frac{x + 2}{x + 1} \][/tex]
Hence, the derivative of the function [tex]\( y = \ln(e^x + x e^x) \)[/tex] is:
[tex]\[ y' = \frac{x e^x + 2 e^x}{x e^x + e^x} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.