Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure! Let's differentiate the function [tex]\( y = \ln(e^x + x e^x) \)[/tex].
To find [tex]\( y' \)[/tex], we'll need to use the chain rule and the properties of logarithms and exponential functions.
1. Identify the inner function:
[tex]\[ u = e^x + x e^x \][/tex]
2. Differentiate the natural logarithm:
According to the chain rule:
[tex]\[ y = \ln(u) \implies \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
3. Differentiate the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = e^x + x e^x \][/tex]
Using the product rule for [tex]\( x e^x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x e^x) \][/tex]
The derivative of [tex]\( e^x \)[/tex] is [tex]\( e^x \)[/tex]:
[tex]\[ \frac{d}{dx}(e^x) = e^x \][/tex]
To differentiate [tex]\( x e^x \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(x e^x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x) = x e^x + e^x \][/tex]
Combining these results:
[tex]\[ \frac{du}{dx} = e^x + (x e^x + e^x) = e^x + x e^x + e^x = x e^x + 2e^x \][/tex]
4. Substitute [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( u \)[/tex] into the chain rule expression:
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{e^x + x e^x} \cdot (x e^x + 2 e^x) \][/tex]
5. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{x e^x + 2 e^x}{e^x + x e^x} \][/tex]
Orthogonalizing terms we get:
[tex]\[ \frac{dy}{dx} = \frac{(x + 2) e^x}{(x + 1) e^x} \][/tex]
6. Cancel out the common [tex]\( e^x \)[/tex] factor in the numerator and the denominator:
[tex]\[ \frac{dy}{dx} = \frac{x + 2}{x + 1} \][/tex]
Hence, the derivative of the function [tex]\( y = \ln(e^x + x e^x) \)[/tex] is:
[tex]\[ y' = \frac{x e^x + 2 e^x}{x e^x + e^x} \][/tex]
To find [tex]\( y' \)[/tex], we'll need to use the chain rule and the properties of logarithms and exponential functions.
1. Identify the inner function:
[tex]\[ u = e^x + x e^x \][/tex]
2. Differentiate the natural logarithm:
According to the chain rule:
[tex]\[ y = \ln(u) \implies \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
3. Differentiate the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = e^x + x e^x \][/tex]
Using the product rule for [tex]\( x e^x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x e^x) \][/tex]
The derivative of [tex]\( e^x \)[/tex] is [tex]\( e^x \)[/tex]:
[tex]\[ \frac{d}{dx}(e^x) = e^x \][/tex]
To differentiate [tex]\( x e^x \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(x e^x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x) = x e^x + e^x \][/tex]
Combining these results:
[tex]\[ \frac{du}{dx} = e^x + (x e^x + e^x) = e^x + x e^x + e^x = x e^x + 2e^x \][/tex]
4. Substitute [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( u \)[/tex] into the chain rule expression:
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{e^x + x e^x} \cdot (x e^x + 2 e^x) \][/tex]
5. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{x e^x + 2 e^x}{e^x + x e^x} \][/tex]
Orthogonalizing terms we get:
[tex]\[ \frac{dy}{dx} = \frac{(x + 2) e^x}{(x + 1) e^x} \][/tex]
6. Cancel out the common [tex]\( e^x \)[/tex] factor in the numerator and the denominator:
[tex]\[ \frac{dy}{dx} = \frac{x + 2}{x + 1} \][/tex]
Hence, the derivative of the function [tex]\( y = \ln(e^x + x e^x) \)[/tex] is:
[tex]\[ y' = \frac{x e^x + 2 e^x}{x e^x + e^x} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.