Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To expand the expression [tex]\(\log \frac{z^8}{x}\)[/tex] using the properties of logarithms, follow these steps:
1. Identify the Components: Recognize that the given expression involves a logarithm of a quotient:
[tex]\[ \log \frac{z^8}{x} \][/tex]
2. Apply the Quotient Rule: The logarithm of a quotient [tex]\(\log \left( \frac{a}{b} \right)\)[/tex] can be expanded as the difference of two logarithms:
[tex]\[ \log \left( \frac{a}{b} \right) = \log a - \log b \][/tex]
Applying this rule to our expression, we get:
[tex]\[ \log \frac{z^8}{x} = \log z^8 - \log x \][/tex]
3. Apply the Power Rule: The logarithm of a power [tex]\(\log (a^b)\)[/tex] can be expanded as the exponent times the logarithm of the base:
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this rule to [tex]\(\log z^8\)[/tex], we get:
[tex]\[ \log z^8 = 8 \log z \][/tex]
Now, substitute this back into the expanded expression from step 2:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
Thus, the expanded form of [tex]\(\log \frac{z^8}{x}\)[/tex] is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
So, the completed expression is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
1. Identify the Components: Recognize that the given expression involves a logarithm of a quotient:
[tex]\[ \log \frac{z^8}{x} \][/tex]
2. Apply the Quotient Rule: The logarithm of a quotient [tex]\(\log \left( \frac{a}{b} \right)\)[/tex] can be expanded as the difference of two logarithms:
[tex]\[ \log \left( \frac{a}{b} \right) = \log a - \log b \][/tex]
Applying this rule to our expression, we get:
[tex]\[ \log \frac{z^8}{x} = \log z^8 - \log x \][/tex]
3. Apply the Power Rule: The logarithm of a power [tex]\(\log (a^b)\)[/tex] can be expanded as the exponent times the logarithm of the base:
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this rule to [tex]\(\log z^8\)[/tex], we get:
[tex]\[ \log z^8 = 8 \log z \][/tex]
Now, substitute this back into the expanded expression from step 2:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
Thus, the expanded form of [tex]\(\log \frac{z^8}{x}\)[/tex] is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
So, the completed expression is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.