Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To expand the expression [tex]\(\log \frac{z^8}{x}\)[/tex] using the properties of logarithms, follow these steps:
1. Identify the Components: Recognize that the given expression involves a logarithm of a quotient:
[tex]\[ \log \frac{z^8}{x} \][/tex]
2. Apply the Quotient Rule: The logarithm of a quotient [tex]\(\log \left( \frac{a}{b} \right)\)[/tex] can be expanded as the difference of two logarithms:
[tex]\[ \log \left( \frac{a}{b} \right) = \log a - \log b \][/tex]
Applying this rule to our expression, we get:
[tex]\[ \log \frac{z^8}{x} = \log z^8 - \log x \][/tex]
3. Apply the Power Rule: The logarithm of a power [tex]\(\log (a^b)\)[/tex] can be expanded as the exponent times the logarithm of the base:
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this rule to [tex]\(\log z^8\)[/tex], we get:
[tex]\[ \log z^8 = 8 \log z \][/tex]
Now, substitute this back into the expanded expression from step 2:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
Thus, the expanded form of [tex]\(\log \frac{z^8}{x}\)[/tex] is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
So, the completed expression is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
1. Identify the Components: Recognize that the given expression involves a logarithm of a quotient:
[tex]\[ \log \frac{z^8}{x} \][/tex]
2. Apply the Quotient Rule: The logarithm of a quotient [tex]\(\log \left( \frac{a}{b} \right)\)[/tex] can be expanded as the difference of two logarithms:
[tex]\[ \log \left( \frac{a}{b} \right) = \log a - \log b \][/tex]
Applying this rule to our expression, we get:
[tex]\[ \log \frac{z^8}{x} = \log z^8 - \log x \][/tex]
3. Apply the Power Rule: The logarithm of a power [tex]\(\log (a^b)\)[/tex] can be expanded as the exponent times the logarithm of the base:
[tex]\[ \log (a^b) = b \log a \][/tex]
Applying this rule to [tex]\(\log z^8\)[/tex], we get:
[tex]\[ \log z^8 = 8 \log z \][/tex]
Now, substitute this back into the expanded expression from step 2:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
Thus, the expanded form of [tex]\(\log \frac{z^8}{x}\)[/tex] is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
So, the completed expression is:
[tex]\[ \log \frac{z^8}{x} = 8 \log z - \log x \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.