At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the slope of the line that represents the conversion of degrees to gradients, we can follow these steps:
1. Identify Two Points:
First, select two points from the given table:
- Point A: [tex]\((-180, -200)\)[/tex]
- Point B: [tex]\((-90, -100)\)[/tex]
2. Calculate the Slope:
The slope ([tex]\( m \)[/tex]) of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting in the coordinates of our selected points:
[tex]\[ m = \frac{-100 - (-200)}{-90 - (-180)} = \frac{-100 + 200}{-90 + 180} = \frac{100}{90} = \frac{10}{9} \approx 1.1111111111111112 \][/tex]
3. Round the Slope:
To provide the slope rounded to the nearest hundredth, we can round 1.1111111111111112.
Rounded to the nearest hundredth, we get:
[tex]\[ 1.11 \][/tex]
Therefore, the slope of the line representing the conversion of degrees to gradients is [tex]\( \boxed{1.11} \)[/tex].
1. Identify Two Points:
First, select two points from the given table:
- Point A: [tex]\((-180, -200)\)[/tex]
- Point B: [tex]\((-90, -100)\)[/tex]
2. Calculate the Slope:
The slope ([tex]\( m \)[/tex]) of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting in the coordinates of our selected points:
[tex]\[ m = \frac{-100 - (-200)}{-90 - (-180)} = \frac{-100 + 200}{-90 + 180} = \frac{100}{90} = \frac{10}{9} \approx 1.1111111111111112 \][/tex]
3. Round the Slope:
To provide the slope rounded to the nearest hundredth, we can round 1.1111111111111112.
Rounded to the nearest hundredth, we get:
[tex]\[ 1.11 \][/tex]
Therefore, the slope of the line representing the conversion of degrees to gradients is [tex]\( \boxed{1.11} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.