At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which products result in either a difference of squares or a perfect square trinomial, let us analyze each product one by one:
1. Product: [tex]\((5x+3)(5x-3)\)[/tex]
- This product is of the form [tex]\((a+b)(a-b)\)[/tex], which is a difference of squares.
- Therefore, [tex]\((5x+3)(5x-3)\)[/tex] results in a difference of squares.
2. Product: [tex]\((7x+4)(7x+4)\)[/tex]
- This product is of the form [tex]\((a+b)(a+b)\)[/tex], which is a perfect square trinomial.
- Therefore, [tex]\((7x+4)(7x+4)\)[/tex] results in a perfect square trinomial.
3. Product: [tex]\((2x+1)(x+2)\)[/tex]
- Neither condition of a difference of squares nor a perfect square trinomial is met with this product.
- Therefore, [tex]\((2x+1)(x+2)\)[/tex] does not result in either a difference of squares or a perfect square trinomial.
4. Product: [tex]\((4x-6)(x+8)\)[/tex]
- This product does not fit the conditions of either a difference of squares or a perfect square trinomial.
- Therefore, [tex]\((4x-6)(x+8)\)[/tex] does not result in either a difference of squares or a perfect square trinomial.
5. Product: [tex]\((x-9)(x-9)\)[/tex]
- This product is of the form [tex]\((a-b)(a-b)\)[/tex], which is a perfect square trinomial.
- Therefore, [tex]\((x-9)(x-9)\)[/tex] results in a perfect square trinomial.
6. Product: [tex]\((-3x-6)(-3x+6)\)[/tex]
- This product is of the form [tex]\((-a+b)(-a-b)\)[/tex], which simplifies to [tex]\((a-b)(a+b)\)[/tex], fitting the difference of squares form.
- Therefore, [tex]\((-3x-6)(-3x+6)\)[/tex] results in a difference of squares.
From our analysis, the products that result in a difference of squares or a perfect square trinomial are:
- [tex]\((5x+3)(5x-3)\)[/tex]
- [tex]\((7x+4)(7x+4)\)[/tex]
- [tex]\((x-9)(x-9)\)[/tex]
- [tex]\((-3x-6)(-3x+6)\)[/tex]
1. Product: [tex]\((5x+3)(5x-3)\)[/tex]
- This product is of the form [tex]\((a+b)(a-b)\)[/tex], which is a difference of squares.
- Therefore, [tex]\((5x+3)(5x-3)\)[/tex] results in a difference of squares.
2. Product: [tex]\((7x+4)(7x+4)\)[/tex]
- This product is of the form [tex]\((a+b)(a+b)\)[/tex], which is a perfect square trinomial.
- Therefore, [tex]\((7x+4)(7x+4)\)[/tex] results in a perfect square trinomial.
3. Product: [tex]\((2x+1)(x+2)\)[/tex]
- Neither condition of a difference of squares nor a perfect square trinomial is met with this product.
- Therefore, [tex]\((2x+1)(x+2)\)[/tex] does not result in either a difference of squares or a perfect square trinomial.
4. Product: [tex]\((4x-6)(x+8)\)[/tex]
- This product does not fit the conditions of either a difference of squares or a perfect square trinomial.
- Therefore, [tex]\((4x-6)(x+8)\)[/tex] does not result in either a difference of squares or a perfect square trinomial.
5. Product: [tex]\((x-9)(x-9)\)[/tex]
- This product is of the form [tex]\((a-b)(a-b)\)[/tex], which is a perfect square trinomial.
- Therefore, [tex]\((x-9)(x-9)\)[/tex] results in a perfect square trinomial.
6. Product: [tex]\((-3x-6)(-3x+6)\)[/tex]
- This product is of the form [tex]\((-a+b)(-a-b)\)[/tex], which simplifies to [tex]\((a-b)(a+b)\)[/tex], fitting the difference of squares form.
- Therefore, [tex]\((-3x-6)(-3x+6)\)[/tex] results in a difference of squares.
From our analysis, the products that result in a difference of squares or a perfect square trinomial are:
- [tex]\((5x+3)(5x-3)\)[/tex]
- [tex]\((7x+4)(7x+4)\)[/tex]
- [tex]\((x-9)(x-9)\)[/tex]
- [tex]\((-3x-6)(-3x+6)\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.