Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the standard error of the sample mean using the given weights of the students, we need to follow these steps:
1. Calculate the Sample Mean ([tex]\( \bar{x} \)[/tex]):
To find the sample mean, sum up all the weights and divide by the number of students.
[tex]\[ \bar{x} = \frac{128 + 193 + 166 + 147 + 202 + 183 + 181 + 158}{8} \][/tex]
Simplifying this calculation, we get:
[tex]\[ \bar{x} = \frac{1358}{8} = 169.75 \][/tex]
2. Calculate the Sample Standard Deviation (s):
The sample standard deviation measures the amount of variation or dispersion of a set of values. The formula for sample standard deviation is:
[tex]\[ s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
where [tex]\( x_i \)[/tex] represents each individual weight, [tex]\( \bar{x} \)[/tex] is the sample mean, and [tex]\( n \)[/tex] is the sample size.
Substituting the values, we get:
[tex]\[ s \approx 24.77 \][/tex]
3. Calculate the Sample Size (n):
In this case, the sample size [tex]\( n \)[/tex] is the number of students. There are 8 students.
[tex]\[ n = 8 \][/tex]
4. Calculate the Standard Error of the Sample Mean (SE):
The standard error of the sample mean is given by the formula:
[tex]\[ SE = \frac{s}{\sqrt{n}} \][/tex]
Substituting [tex]\( s = 24.77 \)[/tex] and [tex]\( n = 8 \)[/tex], we get:
[tex]\[ SE = \frac{24.77}{\sqrt{8}} \][/tex]
[tex]\[ SE \approx \frac{24.77}{2.83} \approx 8.76 \][/tex]
Therefore, the standard error of the sample mean, rounded to the hundredths place, is 8.76.
1. Calculate the Sample Mean ([tex]\( \bar{x} \)[/tex]):
To find the sample mean, sum up all the weights and divide by the number of students.
[tex]\[ \bar{x} = \frac{128 + 193 + 166 + 147 + 202 + 183 + 181 + 158}{8} \][/tex]
Simplifying this calculation, we get:
[tex]\[ \bar{x} = \frac{1358}{8} = 169.75 \][/tex]
2. Calculate the Sample Standard Deviation (s):
The sample standard deviation measures the amount of variation or dispersion of a set of values. The formula for sample standard deviation is:
[tex]\[ s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
where [tex]\( x_i \)[/tex] represents each individual weight, [tex]\( \bar{x} \)[/tex] is the sample mean, and [tex]\( n \)[/tex] is the sample size.
Substituting the values, we get:
[tex]\[ s \approx 24.77 \][/tex]
3. Calculate the Sample Size (n):
In this case, the sample size [tex]\( n \)[/tex] is the number of students. There are 8 students.
[tex]\[ n = 8 \][/tex]
4. Calculate the Standard Error of the Sample Mean (SE):
The standard error of the sample mean is given by the formula:
[tex]\[ SE = \frac{s}{\sqrt{n}} \][/tex]
Substituting [tex]\( s = 24.77 \)[/tex] and [tex]\( n = 8 \)[/tex], we get:
[tex]\[ SE = \frac{24.77}{\sqrt{8}} \][/tex]
[tex]\[ SE \approx \frac{24.77}{2.83} \approx 8.76 \][/tex]
Therefore, the standard error of the sample mean, rounded to the hundredths place, is 8.76.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.