Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the exponential equation [tex]\( 10e^x - 2 = 8 \)[/tex], we can follow a series of logical steps:
1. Isolate the exponential term:
[tex]\[ 10e^x - 2 = 8 \][/tex]
Add 2 to both sides to isolate the term involving [tex]\( e^x \)[/tex]:
[tex]\[ 10e^x = 10 \][/tex]
2. Solve for [tex]\( e^x \)[/tex]:
Divide both sides by 10 to further isolate [tex]\( e^x \)[/tex]:
[tex]\[ e^x = 1 \][/tex]
3. Solve for [tex]\( x \)[/tex] using the natural logarithm:
Since [tex]\( e^x = 1 \)[/tex], we can take the natural logarithm of both sides:
[tex]\[ \ln(e^x) = \ln(1) \][/tex]
By properties of logarithms, we know that [tex]\( \ln(e^x) = x \cdot \ln(e) \)[/tex] and [tex]\( \ln(e) = 1 \)[/tex], hence:
[tex]\[ x = \ln(1) \][/tex]
We also know that [tex]\( \ln(1) = 0 \)[/tex], therefore:
[tex]\[ x = 0 \][/tex]
Thus, in terms of logarithms, the solution for [tex]\( x \)[/tex] is [tex]\( \ln(1) \)[/tex], and the exact value is [tex]\( x = 0 \)[/tex].
Finally, to confirm the solution:
- In terms of logarithms: [tex]\( x = \ln(1) \)[/tex]
- Exact numerical value: [tex]\( x = 0.0 \)[/tex] (correct to four decimal places)
1. Isolate the exponential term:
[tex]\[ 10e^x - 2 = 8 \][/tex]
Add 2 to both sides to isolate the term involving [tex]\( e^x \)[/tex]:
[tex]\[ 10e^x = 10 \][/tex]
2. Solve for [tex]\( e^x \)[/tex]:
Divide both sides by 10 to further isolate [tex]\( e^x \)[/tex]:
[tex]\[ e^x = 1 \][/tex]
3. Solve for [tex]\( x \)[/tex] using the natural logarithm:
Since [tex]\( e^x = 1 \)[/tex], we can take the natural logarithm of both sides:
[tex]\[ \ln(e^x) = \ln(1) \][/tex]
By properties of logarithms, we know that [tex]\( \ln(e^x) = x \cdot \ln(e) \)[/tex] and [tex]\( \ln(e) = 1 \)[/tex], hence:
[tex]\[ x = \ln(1) \][/tex]
We also know that [tex]\( \ln(1) = 0 \)[/tex], therefore:
[tex]\[ x = 0 \][/tex]
Thus, in terms of logarithms, the solution for [tex]\( x \)[/tex] is [tex]\( \ln(1) \)[/tex], and the exact value is [tex]\( x = 0 \)[/tex].
Finally, to confirm the solution:
- In terms of logarithms: [tex]\( x = \ln(1) \)[/tex]
- Exact numerical value: [tex]\( x = 0.0 \)[/tex] (correct to four decimal places)
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.