Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's break down the problem step-by-step to understand the correct answer.
The equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] is actually a very common equation used in chemistry, specifically for situations involving solutions. It is used to understand how the concentration of a solution changes when it is diluted, or to find out how much of a concentrated solution is needed to achieve a certain concentration.
Here’s a detailed explanation of each component of the equation:
- [tex]\( C_1 \)[/tex]: This represents the initial concentration of the solution before dilution.
- [tex]\( V_1 \)[/tex]: This is the initial volume of the solution before dilution.
- [tex]\( C_2 \)[/tex]: This denotes the final concentration of the solution after dilution.
- [tex]\( V_2 \)[/tex]: This stands for the final volume of the solution after dilution.
When we mix or dilute a solution, the quantity of solute that was present initially is spread out into a new total volume. The equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] states that the product of the initial concentration and volume is equal to the product of the final concentration and volume.
Here is how this equation works in practice:
1. To Find Initial or Final Concentration: Suppose you know the volumes and need to find out the concentration after dilution (or vice-versa):
[tex]\[ C_2 = \frac{C_1 V_1}{V_2} \][/tex]
or
[tex]\[ C_1 = \frac{C_2 V_2}{V_1} \][/tex]
2. To Find Initial or Final Volume: If you need to find out the volume required to achieve a particular concentration:
[tex]\[ V_2 = \frac{C_1 V_1}{C_2} \][/tex]
or
[tex]\[ V_1 = \frac{C_2 V_2}{C_1} \][/tex]
From these interpretations, it is clear that the equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] is specifically used to relate the concentration and volume of a solution before and after dilution.
Therefore, the correct answer to the question is:
The equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] is used to relate concentration and volume before/after dilution.
The equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] is actually a very common equation used in chemistry, specifically for situations involving solutions. It is used to understand how the concentration of a solution changes when it is diluted, or to find out how much of a concentrated solution is needed to achieve a certain concentration.
Here’s a detailed explanation of each component of the equation:
- [tex]\( C_1 \)[/tex]: This represents the initial concentration of the solution before dilution.
- [tex]\( V_1 \)[/tex]: This is the initial volume of the solution before dilution.
- [tex]\( C_2 \)[/tex]: This denotes the final concentration of the solution after dilution.
- [tex]\( V_2 \)[/tex]: This stands for the final volume of the solution after dilution.
When we mix or dilute a solution, the quantity of solute that was present initially is spread out into a new total volume. The equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] states that the product of the initial concentration and volume is equal to the product of the final concentration and volume.
Here is how this equation works in practice:
1. To Find Initial or Final Concentration: Suppose you know the volumes and need to find out the concentration after dilution (or vice-versa):
[tex]\[ C_2 = \frac{C_1 V_1}{V_2} \][/tex]
or
[tex]\[ C_1 = \frac{C_2 V_2}{V_1} \][/tex]
2. To Find Initial or Final Volume: If you need to find out the volume required to achieve a particular concentration:
[tex]\[ V_2 = \frac{C_1 V_1}{C_2} \][/tex]
or
[tex]\[ V_1 = \frac{C_2 V_2}{C_1} \][/tex]
From these interpretations, it is clear that the equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] is specifically used to relate the concentration and volume of a solution before and after dilution.
Therefore, the correct answer to the question is:
The equation [tex]\( C_1 V_1 = C_2 V_2 \)[/tex] is used to relate concentration and volume before/after dilution.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.