Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this question, we break it down into two parts as specified:
### Part 1: Determine the Probability a Student is in Sports Given That They Are a Senior
This requires us to determine [tex]\( P(\text{Sports} \mid \text{Senior}) \)[/tex].
From the two-way table, observe the following:
- The total number of seniors is 35.
- The total number of seniors who are in sports is 25.
We apply the conditional probability formula:
[tex]\[ P(\text{Sports} \mid \text{Senior}) = \frac{\text{Number of seniors in sports}}{\text{Total number of seniors}} \][/tex]
By using the numbers directly from the table:
[tex]\[ P(\text{Sports} \mid \text{Senior}) = \frac{25}{35} \][/tex]
In simple mathematical terms:
[tex]\[ P(\text{Sports} \mid \text{Senior}) = \frac{25}{35} = \frac{5}{7} \approx 0.714 \][/tex]
### Part 2: Determine the Probability That It's a Senior and in Sports
This requires us to determine [tex]\( P(\text{Senior and Sports}) \)[/tex].
From the provided data:
- The total number of students is 100.
- The number of seniors who are in sports is 25.
We apply the probability formula for combined events:
[tex]\[ P(\text{Senior and Sports}) = \frac{\text{Number of seniors in sports}}{\text{Total number of students}} \][/tex]
By using the numbers directly from the table:
[tex]\[ P(\text{Senior and Sports}) = \frac{25}{100} \][/tex]
Therefore:
[tex]\[ P(\text{Senior and Sports}) = \frac{25}{100} = \frac{1}{4} = 0.25 \][/tex]
### Summary of Results
1. The probability a student is in sports, given that they are a senior [tex]\( P(\text{Sports} \mid \text{Senior}) \)[/tex] is approximately 0.714.
2. The probability that it’s a senior in sports [tex]\( P(\text{Senior and Sports}) \)[/tex] is 0.25.
So, specifically for the given question:
[tex]\[ P(\text{Senior}) = 0.35 \][/tex]
[tex]\[ P(\text{Senior and Sports}) = 0.25 \][/tex]
These are the detailed solutions for the given probabilities.
### Part 1: Determine the Probability a Student is in Sports Given That They Are a Senior
This requires us to determine [tex]\( P(\text{Sports} \mid \text{Senior}) \)[/tex].
From the two-way table, observe the following:
- The total number of seniors is 35.
- The total number of seniors who are in sports is 25.
We apply the conditional probability formula:
[tex]\[ P(\text{Sports} \mid \text{Senior}) = \frac{\text{Number of seniors in sports}}{\text{Total number of seniors}} \][/tex]
By using the numbers directly from the table:
[tex]\[ P(\text{Sports} \mid \text{Senior}) = \frac{25}{35} \][/tex]
In simple mathematical terms:
[tex]\[ P(\text{Sports} \mid \text{Senior}) = \frac{25}{35} = \frac{5}{7} \approx 0.714 \][/tex]
### Part 2: Determine the Probability That It's a Senior and in Sports
This requires us to determine [tex]\( P(\text{Senior and Sports}) \)[/tex].
From the provided data:
- The total number of students is 100.
- The number of seniors who are in sports is 25.
We apply the probability formula for combined events:
[tex]\[ P(\text{Senior and Sports}) = \frac{\text{Number of seniors in sports}}{\text{Total number of students}} \][/tex]
By using the numbers directly from the table:
[tex]\[ P(\text{Senior and Sports}) = \frac{25}{100} \][/tex]
Therefore:
[tex]\[ P(\text{Senior and Sports}) = \frac{25}{100} = \frac{1}{4} = 0.25 \][/tex]
### Summary of Results
1. The probability a student is in sports, given that they are a senior [tex]\( P(\text{Sports} \mid \text{Senior}) \)[/tex] is approximately 0.714.
2. The probability that it’s a senior in sports [tex]\( P(\text{Senior and Sports}) \)[/tex] is 0.25.
So, specifically for the given question:
[tex]\[ P(\text{Senior}) = 0.35 \][/tex]
[tex]\[ P(\text{Senior and Sports}) = 0.25 \][/tex]
These are the detailed solutions for the given probabilities.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.