Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's address each part of your question step-by-step.
1. Probability of pulling out a baseball:
- We have a total of 2 baseballs, 5 tennis balls, and 3 whiffle balls, making a total of 2 + 5 + 3 = 10 balls.
- The probability of pulling out a baseball can be expressed as:
- Reduced fraction: [tex]\(\frac{2}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{5}\)[/tex]
- Decimal: [tex]\(0.2\)[/tex]
- Percent: [tex]\(20\%\)[/tex]
So, the answer is:
[tex]\[ P(B) = \frac{1}{5} \text{ (reduced fraction) } 0.2 \text{ (decimal) } = 20\% \][/tex]
2. Number of outcomes in the sample space:
- The sample space consists of all the possible outcomes, which are the 10 balls.
- Therefore, the number of outcomes is [tex]\(10\)[/tex].
So, the answer is:
[tex]\[ \text{Outcomes} = 10 \][/tex]
3. Choosing a baseball:
- This is an example of theoretical probability.
- Therefore, in this case, choosing a baseball is the [tex]\(\boxed{\text{theoretical probability}}\)[/tex].
4. Probability of pulling out a tennis ball:
- We have 5 tennis balls out of the total 10 balls.
- The probability of pulling out a tennis ball can be expressed as:
- Reduced fraction: [tex]\(\frac{5}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{2}\)[/tex]
- Decimal: [tex]\(0.5\)[/tex]
- Percent: [tex]\(50\%\)[/tex]
So, the answer is:
[tex]\[ P(T) = \frac{1}{2} \text{ (reduced fraction) } = 0.5 \text{ (decimal) } = 50\% \][/tex]
5. Which is more likely to occur?
- Pulling out a tennis ball is more likely (since 50% is higher than 20%).
So, the answer is:
[tex]\[ \boxed{\text{tennis}} \][/tex]
6. Why?
- The probability of pulling out a tennis ball is closer to 1 (or 100%).
So, the answer is:
[tex]\[ \boxed{\text{Because the probability is closer to } 1} \][/tex]
This completes all parts of the question.
1. Probability of pulling out a baseball:
- We have a total of 2 baseballs, 5 tennis balls, and 3 whiffle balls, making a total of 2 + 5 + 3 = 10 balls.
- The probability of pulling out a baseball can be expressed as:
- Reduced fraction: [tex]\(\frac{2}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{5}\)[/tex]
- Decimal: [tex]\(0.2\)[/tex]
- Percent: [tex]\(20\%\)[/tex]
So, the answer is:
[tex]\[ P(B) = \frac{1}{5} \text{ (reduced fraction) } 0.2 \text{ (decimal) } = 20\% \][/tex]
2. Number of outcomes in the sample space:
- The sample space consists of all the possible outcomes, which are the 10 balls.
- Therefore, the number of outcomes is [tex]\(10\)[/tex].
So, the answer is:
[tex]\[ \text{Outcomes} = 10 \][/tex]
3. Choosing a baseball:
- This is an example of theoretical probability.
- Therefore, in this case, choosing a baseball is the [tex]\(\boxed{\text{theoretical probability}}\)[/tex].
4. Probability of pulling out a tennis ball:
- We have 5 tennis balls out of the total 10 balls.
- The probability of pulling out a tennis ball can be expressed as:
- Reduced fraction: [tex]\(\frac{5}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{2}\)[/tex]
- Decimal: [tex]\(0.5\)[/tex]
- Percent: [tex]\(50\%\)[/tex]
So, the answer is:
[tex]\[ P(T) = \frac{1}{2} \text{ (reduced fraction) } = 0.5 \text{ (decimal) } = 50\% \][/tex]
5. Which is more likely to occur?
- Pulling out a tennis ball is more likely (since 50% is higher than 20%).
So, the answer is:
[tex]\[ \boxed{\text{tennis}} \][/tex]
6. Why?
- The probability of pulling out a tennis ball is closer to 1 (or 100%).
So, the answer is:
[tex]\[ \boxed{\text{Because the probability is closer to } 1} \][/tex]
This completes all parts of the question.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.