Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's address each part of your question step-by-step.
1. Probability of pulling out a baseball:
- We have a total of 2 baseballs, 5 tennis balls, and 3 whiffle balls, making a total of 2 + 5 + 3 = 10 balls.
- The probability of pulling out a baseball can be expressed as:
- Reduced fraction: [tex]\(\frac{2}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{5}\)[/tex]
- Decimal: [tex]\(0.2\)[/tex]
- Percent: [tex]\(20\%\)[/tex]
So, the answer is:
[tex]\[ P(B) = \frac{1}{5} \text{ (reduced fraction) } 0.2 \text{ (decimal) } = 20\% \][/tex]
2. Number of outcomes in the sample space:
- The sample space consists of all the possible outcomes, which are the 10 balls.
- Therefore, the number of outcomes is [tex]\(10\)[/tex].
So, the answer is:
[tex]\[ \text{Outcomes} = 10 \][/tex]
3. Choosing a baseball:
- This is an example of theoretical probability.
- Therefore, in this case, choosing a baseball is the [tex]\(\boxed{\text{theoretical probability}}\)[/tex].
4. Probability of pulling out a tennis ball:
- We have 5 tennis balls out of the total 10 balls.
- The probability of pulling out a tennis ball can be expressed as:
- Reduced fraction: [tex]\(\frac{5}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{2}\)[/tex]
- Decimal: [tex]\(0.5\)[/tex]
- Percent: [tex]\(50\%\)[/tex]
So, the answer is:
[tex]\[ P(T) = \frac{1}{2} \text{ (reduced fraction) } = 0.5 \text{ (decimal) } = 50\% \][/tex]
5. Which is more likely to occur?
- Pulling out a tennis ball is more likely (since 50% is higher than 20%).
So, the answer is:
[tex]\[ \boxed{\text{tennis}} \][/tex]
6. Why?
- The probability of pulling out a tennis ball is closer to 1 (or 100%).
So, the answer is:
[tex]\[ \boxed{\text{Because the probability is closer to } 1} \][/tex]
This completes all parts of the question.
1. Probability of pulling out a baseball:
- We have a total of 2 baseballs, 5 tennis balls, and 3 whiffle balls, making a total of 2 + 5 + 3 = 10 balls.
- The probability of pulling out a baseball can be expressed as:
- Reduced fraction: [tex]\(\frac{2}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{5}\)[/tex]
- Decimal: [tex]\(0.2\)[/tex]
- Percent: [tex]\(20\%\)[/tex]
So, the answer is:
[tex]\[ P(B) = \frac{1}{5} \text{ (reduced fraction) } 0.2 \text{ (decimal) } = 20\% \][/tex]
2. Number of outcomes in the sample space:
- The sample space consists of all the possible outcomes, which are the 10 balls.
- Therefore, the number of outcomes is [tex]\(10\)[/tex].
So, the answer is:
[tex]\[ \text{Outcomes} = 10 \][/tex]
3. Choosing a baseball:
- This is an example of theoretical probability.
- Therefore, in this case, choosing a baseball is the [tex]\(\boxed{\text{theoretical probability}}\)[/tex].
4. Probability of pulling out a tennis ball:
- We have 5 tennis balls out of the total 10 balls.
- The probability of pulling out a tennis ball can be expressed as:
- Reduced fraction: [tex]\(\frac{5}{10}\)[/tex] which simplifies to [tex]\(\frac{1}{2}\)[/tex]
- Decimal: [tex]\(0.5\)[/tex]
- Percent: [tex]\(50\%\)[/tex]
So, the answer is:
[tex]\[ P(T) = \frac{1}{2} \text{ (reduced fraction) } = 0.5 \text{ (decimal) } = 50\% \][/tex]
5. Which is more likely to occur?
- Pulling out a tennis ball is more likely (since 50% is higher than 20%).
So, the answer is:
[tex]\[ \boxed{\text{tennis}} \][/tex]
6. Why?
- The probability of pulling out a tennis ball is closer to 1 (or 100%).
So, the answer is:
[tex]\[ \boxed{\text{Because the probability is closer to } 1} \][/tex]
This completes all parts of the question.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.