Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's solve this step by step.
### Given Data:
- Radius of the Earth ([tex]\(r\)[/tex]): 3960 miles
- Height of the deck above sea level ([tex]\(h_d\)[/tex]): 90 feet
- Height of the bridge above sea level ([tex]\(h_b\)[/tex]): 180 feet
#### Convert Heights from Feet to Miles:
1 mile = 5280 feet
[tex]\[ h_d = \frac{90 \text{ feet}}{5280 \text{ feet/mile}} \approx 0.017045454545454544 \text{ miles}\][/tex]
[tex]\[ h_b = \frac{180 \text{ feet}}{5280 \text{ feet/mile}} \approx 0.03409090909090909 \text{ miles}\][/tex]
### Distance to Horizon Formula:
The formula to calculate the distance to the horizon ([tex]\(d\)[/tex]) is:
[tex]\[ d = \sqrt{2 \cdot r \cdot h} \][/tex]
where [tex]\(r\)[/tex] is the radius of the Earth, and [tex]\(h\)[/tex] is the height above the sea level.
#### Calculate the Distance from the Deck:
Using the height of the deck ([tex]\(h_d\)[/tex]):
[tex]\[ d_d = \sqrt{2 \cdot 3960 \text{ miles} \cdot 0.017045454545454544 \text{ miles}} \approx 11.62 \text{ miles} \][/tex]
#### Calculate the Distance from the Bridge:
Using the height of the bridge ([tex]\(h_b\)[/tex]):
[tex]\[ d_b = \sqrt{2 \cdot 3960 \text{ miles} \cdot 0.03409090909090909 \text{ miles}} \approx 16.43 \text{ miles} \][/tex]
### Summary:
- From the deck of the ship (90 feet above sea level), a person can see approximately 11.62 miles.
- From the bridge of the ship (180 feet above sea level), a person can see approximately 16.43 miles.
These results are rounded to two decimal places as required.
### Given Data:
- Radius of the Earth ([tex]\(r\)[/tex]): 3960 miles
- Height of the deck above sea level ([tex]\(h_d\)[/tex]): 90 feet
- Height of the bridge above sea level ([tex]\(h_b\)[/tex]): 180 feet
#### Convert Heights from Feet to Miles:
1 mile = 5280 feet
[tex]\[ h_d = \frac{90 \text{ feet}}{5280 \text{ feet/mile}} \approx 0.017045454545454544 \text{ miles}\][/tex]
[tex]\[ h_b = \frac{180 \text{ feet}}{5280 \text{ feet/mile}} \approx 0.03409090909090909 \text{ miles}\][/tex]
### Distance to Horizon Formula:
The formula to calculate the distance to the horizon ([tex]\(d\)[/tex]) is:
[tex]\[ d = \sqrt{2 \cdot r \cdot h} \][/tex]
where [tex]\(r\)[/tex] is the radius of the Earth, and [tex]\(h\)[/tex] is the height above the sea level.
#### Calculate the Distance from the Deck:
Using the height of the deck ([tex]\(h_d\)[/tex]):
[tex]\[ d_d = \sqrt{2 \cdot 3960 \text{ miles} \cdot 0.017045454545454544 \text{ miles}} \approx 11.62 \text{ miles} \][/tex]
#### Calculate the Distance from the Bridge:
Using the height of the bridge ([tex]\(h_b\)[/tex]):
[tex]\[ d_b = \sqrt{2 \cdot 3960 \text{ miles} \cdot 0.03409090909090909 \text{ miles}} \approx 16.43 \text{ miles} \][/tex]
### Summary:
- From the deck of the ship (90 feet above sea level), a person can see approximately 11.62 miles.
- From the bridge of the ship (180 feet above sea level), a person can see approximately 16.43 miles.
These results are rounded to two decimal places as required.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.