At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's go through the steps to find the mean and the standard deviation of the sampling distribution of the sample proportion.
### Part 1 of 6 (a)
Find the mean [tex]\(\mu_{\hat{p}}\)[/tex]:
Given data:
- Population proportion ([tex]\(p\)[/tex]) = 0.64
- Sample size ([tex]\(n\)[/tex]) = 225
The mean of the sampling distribution of the sample proportion ([tex]\(\mu_{\hat{p}}\)[/tex]) is given by the population proportion [tex]\(p\)[/tex].
[tex]\[ \mu_{\hat{p}} = p = 0.64 \][/tex]
### Part 2 of 6 (b)
Find the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex]:
The standard deviation of the sampling distribution of the sample proportion ([tex]\(\sigma_{\hat{p}}\)[/tex]) can be calculated using the formula:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{p(1 - p)}{n}} \][/tex]
Substitute the given values into the formula:
- [tex]\(p = 0.64\)[/tex]
- [tex]\(n = 225\)[/tex]
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64(1 - 0.64)}{225}} \][/tex]
Calculate the expression inside the square root:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64 \times 0.36}{225}} \][/tex]
Further simplify it:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.2304}{225}} = \sqrt{0.001024} \][/tex]
Finally, take the square root to find the standard deviation:
[tex]\[ \sigma_{\hat{p}} \approx 0.032 \][/tex]
So, the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex] is approximately 0.032.
### Part 1 of 6 (a)
Find the mean [tex]\(\mu_{\hat{p}}\)[/tex]:
Given data:
- Population proportion ([tex]\(p\)[/tex]) = 0.64
- Sample size ([tex]\(n\)[/tex]) = 225
The mean of the sampling distribution of the sample proportion ([tex]\(\mu_{\hat{p}}\)[/tex]) is given by the population proportion [tex]\(p\)[/tex].
[tex]\[ \mu_{\hat{p}} = p = 0.64 \][/tex]
### Part 2 of 6 (b)
Find the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex]:
The standard deviation of the sampling distribution of the sample proportion ([tex]\(\sigma_{\hat{p}}\)[/tex]) can be calculated using the formula:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{p(1 - p)}{n}} \][/tex]
Substitute the given values into the formula:
- [tex]\(p = 0.64\)[/tex]
- [tex]\(n = 225\)[/tex]
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64(1 - 0.64)}{225}} \][/tex]
Calculate the expression inside the square root:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64 \times 0.36}{225}} \][/tex]
Further simplify it:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.2304}{225}} = \sqrt{0.001024} \][/tex]
Finally, take the square root to find the standard deviation:
[tex]\[ \sigma_{\hat{p}} \approx 0.032 \][/tex]
So, the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex] is approximately 0.032.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.