At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's go through the steps to find the mean and the standard deviation of the sampling distribution of the sample proportion.
### Part 1 of 6 (a)
Find the mean [tex]\(\mu_{\hat{p}}\)[/tex]:
Given data:
- Population proportion ([tex]\(p\)[/tex]) = 0.64
- Sample size ([tex]\(n\)[/tex]) = 225
The mean of the sampling distribution of the sample proportion ([tex]\(\mu_{\hat{p}}\)[/tex]) is given by the population proportion [tex]\(p\)[/tex].
[tex]\[ \mu_{\hat{p}} = p = 0.64 \][/tex]
### Part 2 of 6 (b)
Find the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex]:
The standard deviation of the sampling distribution of the sample proportion ([tex]\(\sigma_{\hat{p}}\)[/tex]) can be calculated using the formula:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{p(1 - p)}{n}} \][/tex]
Substitute the given values into the formula:
- [tex]\(p = 0.64\)[/tex]
- [tex]\(n = 225\)[/tex]
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64(1 - 0.64)}{225}} \][/tex]
Calculate the expression inside the square root:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64 \times 0.36}{225}} \][/tex]
Further simplify it:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.2304}{225}} = \sqrt{0.001024} \][/tex]
Finally, take the square root to find the standard deviation:
[tex]\[ \sigma_{\hat{p}} \approx 0.032 \][/tex]
So, the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex] is approximately 0.032.
### Part 1 of 6 (a)
Find the mean [tex]\(\mu_{\hat{p}}\)[/tex]:
Given data:
- Population proportion ([tex]\(p\)[/tex]) = 0.64
- Sample size ([tex]\(n\)[/tex]) = 225
The mean of the sampling distribution of the sample proportion ([tex]\(\mu_{\hat{p}}\)[/tex]) is given by the population proportion [tex]\(p\)[/tex].
[tex]\[ \mu_{\hat{p}} = p = 0.64 \][/tex]
### Part 2 of 6 (b)
Find the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex]:
The standard deviation of the sampling distribution of the sample proportion ([tex]\(\sigma_{\hat{p}}\)[/tex]) can be calculated using the formula:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{p(1 - p)}{n}} \][/tex]
Substitute the given values into the formula:
- [tex]\(p = 0.64\)[/tex]
- [tex]\(n = 225\)[/tex]
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64(1 - 0.64)}{225}} \][/tex]
Calculate the expression inside the square root:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.64 \times 0.36}{225}} \][/tex]
Further simplify it:
[tex]\[ \sigma_{\hat{p}} = \sqrt{\frac{0.2304}{225}} = \sqrt{0.001024} \][/tex]
Finally, take the square root to find the standard deviation:
[tex]\[ \sigma_{\hat{p}} \approx 0.032 \][/tex]
So, the standard deviation [tex]\(\sigma_{\hat{p}}\)[/tex] is approximately 0.032.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.