Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To analyze the features of the function [tex]\( f(x) = 2 \cdot 3^x - 6 \)[/tex]:
1. Type of Function:
- The function [tex]\( f(x) \)[/tex] is an exponential function. This type of function typically takes the form [tex]\( a \cdot b^x + c \)[/tex].
2. Horizontal Asymptote:
- For an exponential function of the form [tex]\( f(x) = a \cdot b^x + c \)[/tex], the horizontal asymptote is [tex]\( y = c \)[/tex]. Here, the function has a horizontal asymptote of [tex]\( y = -6 \)[/tex].
3. Range of the Function:
- The range of an exponential function with a horizontal asymptote at [tex]\( y = -6 \)[/tex] and considering that the function grows indefinitely as [tex]\( x \)[/tex] increases, is [tex]\( (-6, \infty) \)[/tex].
4. Increasing or Decreasing:
- The function is increasing because the base of the exponential part, [tex]\( b = 3 \)[/tex], is greater than 1.
5. Domain of the Function:
- The domain of an exponential function is all real numbers. Therefore, the domain of this function is [tex]\( (-\infty, \infty) \)[/tex].
6. End Behavior:
- As [tex]\( x \to -\infty \)[/tex], the value of [tex]\( f(x) \)[/tex] approaches the horizontal asymptote. Hence, [tex]\( f(x) \to -6 \)[/tex].
- As [tex]\( x \to \infty \)[/tex], the exponential term grows infinitely large. Therefore, [tex]\( f(x) \to \infty \)[/tex].
Putting it all together, we have:
The function [tex]\( f(x) \)[/tex] is an exponential function with a horizontal asymptote of [tex]\( y = -6 \)[/tex]. The range of the function is [tex]\( (-6, \infty) \)[/tex], and it is increasing on its domain of [tex]\( (-\infty, \infty) \)[/tex]. The end behavior on the left side is as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -6 \)[/tex], and the end behavior on the right side is as [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
1. Type of Function:
- The function [tex]\( f(x) \)[/tex] is an exponential function. This type of function typically takes the form [tex]\( a \cdot b^x + c \)[/tex].
2. Horizontal Asymptote:
- For an exponential function of the form [tex]\( f(x) = a \cdot b^x + c \)[/tex], the horizontal asymptote is [tex]\( y = c \)[/tex]. Here, the function has a horizontal asymptote of [tex]\( y = -6 \)[/tex].
3. Range of the Function:
- The range of an exponential function with a horizontal asymptote at [tex]\( y = -6 \)[/tex] and considering that the function grows indefinitely as [tex]\( x \)[/tex] increases, is [tex]\( (-6, \infty) \)[/tex].
4. Increasing or Decreasing:
- The function is increasing because the base of the exponential part, [tex]\( b = 3 \)[/tex], is greater than 1.
5. Domain of the Function:
- The domain of an exponential function is all real numbers. Therefore, the domain of this function is [tex]\( (-\infty, \infty) \)[/tex].
6. End Behavior:
- As [tex]\( x \to -\infty \)[/tex], the value of [tex]\( f(x) \)[/tex] approaches the horizontal asymptote. Hence, [tex]\( f(x) \to -6 \)[/tex].
- As [tex]\( x \to \infty \)[/tex], the exponential term grows infinitely large. Therefore, [tex]\( f(x) \to \infty \)[/tex].
Putting it all together, we have:
The function [tex]\( f(x) \)[/tex] is an exponential function with a horizontal asymptote of [tex]\( y = -6 \)[/tex]. The range of the function is [tex]\( (-6, \infty) \)[/tex], and it is increasing on its domain of [tex]\( (-\infty, \infty) \)[/tex]. The end behavior on the left side is as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -6 \)[/tex], and the end behavior on the right side is as [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.